
r ^

r

r
r

P t i m e * C P L U s e r ' s G u i d e
Revision 21.0

DOC4302-3LA

CPL User's Guide

Third Edition

Glenn Morrow

This guide documents the software operation
of the Prime Computer and its supporting
systems and utilities as implemented at
Master Disk Revision Level 21.0. (Rev. 21.0).

Prime Computer, Inc., Prime Park, Natick, MA 01760

COPYRIGHT INFORMATION

The information in this document is subject to change without notice and should not be construed as
a commitment by Prime Computer, Inc. Prime Computer, Inc. assumes no responsibility for any
errors that may appear in this document.
The software described in this document is furnished under a license and may be used or copied
only in accordance with the terms of such license.
Copyright© 1987 by Prime Computer, Inc., Prime Park Natick, Massachusetts 01760
PRIME, PRIME, PRIMOS and the PRIME logo are registered trademarks of Prime Computer, Inc.
DISCOVER, EDMS, FM+, INFO/BASIC, INFORM, Prime INFORMATION, Prime
INFORMATION CONNECTION, MDL, MIDAS, MIDASPLUS, PRIME MEDUSA, PERFORM,
PERFORMER, PRIME/SNA, PRIME TIMER, PRIMECALC, PRIMELINK, PRIMENET,
PRIMEWAY, PRIMEWORD, PRIMIX, PRISAM, PRODUCER, Prime INFORMATION/pc,
PST 100, PT25, PT45, PT65, PT200, PW150, PW200, PW250, RINGNET, SIMPLE, 50 Series,
400, 750, 850, 2250, 2350,2450, 2550,2650, 2655,2755, 6350, 6550, 9650,9655, 9750, 9755,
9950, and 9955 and 9955II are trademarks of Prime Computer, Inc.

PRINTING HISTORY

First Edition (IDR4302) January 1981 for Revision 18.1
Second Edition (DOC4302-190) July 1982 for Revision 19.0
Third Edition (DOC4302-3LA) July 1987 for Revision 21.0

CREDITS

Design: Carol Smith
Editorial: Barbara Fowlkes
Graphics Support: Mingling Chang
Illustration: Jerrie Kishpaugh
Illustration Support: Rosanne Dickey, Anna Spoerri
D o c u m e n t P r e p a r a t i o n : C e l e s t e H e n r y, M a r g a r e t T h e r i a u l t ^ ^ ^
P r o d u c t i o n : J u d y G o r d o n *
Composition: Julie Cyphers, Anne Marie Fantasia

HOW TO ORDER TECHNICAL DOCUMENTS

Follow the instructions below to obtain a catalog, a price list, and information on placing orders.
United States Only: Call Prime Telemarketing, toll free, at 800-343-2533, Monday through Friday,
8:30 a.m. to 5:00 p.m. (EST).
International: Contact your local Prime subsidiary or distributor.

CUSTOMER SUPPORT CENTER

Prime provides the following toll-free numbers for customers in the United States needing service:

1-800-322-2838 (within Massachusetts)
1-800-541-8888 (within Alaska)
1-800-651-1313 (within Hawaii)
1-800-343-2320 (within other states)

SURVEYS AND CORRESPONDENCE

Please comment on this manual using the Reader Response Form provided in the back of this book.
Address any additional comments on this or other Prime documents to:

Technical Publications Department
Prime Computer, Inc.
500 Old Connecticut Path
Framingham, MA 01701

III

Contents
A b o u t T h i s B o o k i x

Part I The Basic Subset

1 I n t r o d u c t i o n t o C P L 1 - 1
W h a t I s C P L ? 1 - 1
H o w M i g h t Y o u U s e C P L ? 1 - 1

N a m i n g C P L P r o g r a m s 1 - 2
R u n n i n g C P L P r o g r a m s 1 - 2
H o w D o e s C P L W o r k ? 1 4

2 T h e B a s i c s o f C P L 2 1
PRIMOS Commands in CPL Programs 2 -1

U s i n g V a r i a b l e s i n C P L P r o g r a m s 2 - 3
D e c i s i o n M a k i n g i n C P L P r o g r a m s 2 - 5
& D O G r o u p s 2 - 1 1
When One CPL Program Runs Another 2-13
F u n c t i o n C a l l s 2 - 1 4

Using CPL With Subsystems: &DATA Groups 2-17
How CPL Programs End: The &RETURN Directive 2-21
W h e n E r r o r s O c c u r 2 - 2 2

3 C P L F o r m a t 3 1
C P L F o r m a t R u l e s 3 - 1

U s i n g Q u o t e d S t r i n g s 3 - 7

Part II The Intermediate Subset

4 V a r i a b l e s 4 - 1
T h e & S E T _ V A R D i r e c t i v e 4 - 1

S t r i n g V a l u e s f o r V a r i a b l e s 4 - 2
I n t e g e r V a l u e s f o r V a r i a b l e s 4 - 2
L o g i c a l V a l u e s f o r V a r i a b l e s 4 - 3
L o c a l a n d G l o b a l V a r i a b l e s 4 - 4
P R I M O S C o m m a n d s 4 - 6

5 T e r m i n a l I n p u t a n d O u t p u t 5 - 1
I n p u t O v e r v i e w 5 - 1
O u t p u t O v e r v i e w 5 - 1
T e r m i n a l I n p u t 5 - 2
C O M I N P U T F i l e I n p u t 5 - 6

O u t p u t 5 - 9

6 Arguments With Type-checking
a n d D e f a u l t V a l u e s 6 - 1
O v e r v i e w 6 - 1

Specifying Default Values for Arguments 6-2
Spec i f y ing Da ta Types fo r A rgumen ts 6 -4
Specifying the REST Data Type for Arguments 6-7

7 P r o c e s s i n g G r o u p s o f F i l e s 7 - 1

Selecting Mult iple Fi les and Directories 7-1
Using Suffixes: The BEFORE and AFTER Functions 7-1
W i l d c a r d s 7 - 4

U s i n g W i l d ca rd s : Th e WIL D Fu n c t i o n 7 -6

8 D e c i s i o n M a k i n g 8 - 1
&IF Direct ives Using Logical Operators 8-2
N e s t e d & I F D i r e c t i v e s 8 - 3
T h e & S E L E C T D i r e c t i v e 8 - 7

9 L o o p s 9 _ i
O v e r v i e w 9 - 1
C o u n t e d L o o p s 9 - 6
& D O & W H J L E L o o p s 9 - 8
& D O & U N T I L L o o p s 9 - 9

Loops That Combine Counting, &WHILE, and &UNTIL Tests 9-10
& D O & R E P E A T L o o p s 9 - 1 0
& D O & L I S T L o o p s 9 - 1 1
& D O & I T E M S L o o p s 9 - 1 3

1 0 D e b u g g i n g a n d E r r o r H a n d l i n g 1 0 - 1
Debugging CPL Programs: The &DEBUG Directive 10-1
Error Handling: The &SEVERITY Directive 10-6

VI

Part III Full CPL

11 Expression Evaluation 11-1
Variables 11-1
Functions 11-3

Quoted Strings 11-4

Using Abbreviations 11-7
Evaluation of Expressions 11-8

Using PRIMOS Special Characters 11-10

12 Functions 12-1
Arithmetic Functions 12-2

String Functions 124
File System Functions 12-7

Operating System Functions 12-14

13 Object Arguments and Option Arguments 13-1
The &ARGS Directive 13-1

Object Arguments 13-2

Specifying Types 13-2
How Null Strings Are Handled 13-3

Argument Defaults 13-4

Option Arguments 13-6
REST and UNCL Data Types 13-9

14 Writing Routines and Functions 14-1

Writing Routines 14-2

Writing Functions in CPL 14-7

15 Error and Condition Handling 15-1
Error Handling 15-1
Passing Severity Codes 15-4
Condition Handling 15-5

VII

Appendices
A S y n t a x S u m m a r y A 1

B E r r o r M e s s a g e s B - 1
R 1I n t r o d u c t i o n D
R 9Error Messages

C Running CPL Programs as
B a t c h J o b s a n d P h a n t o m s c - i
Running CPL Programs as Batch Jobs C-1
J o b D i s p l a y s f o r C P L J o b s c " 2
Runn ing CPL Prog rams as Phan toms c_3

D COMINPUT and CPL Compared d- i
C o m p a r i s o n s ^ " ^
S a m p l e F i l e s D _ 4
A F i n a l N o t e D " 8

I n d e x I n d e x - 1

VIII

About This Book

The CPL User's Guide provides both a tutorial and a reference guide for the Prime Command
Procedure Language (CPL).

This book is divided into three parts.

• Part I introduces CPL and teaches the basics of CPL programming. These chapters
describe how to create and run a CPL program, the basic statements used in virtually
all CPL programs, and the formatting rules for all CPL statements. If you find your
needs satisfied by the features provided in this basic subset of CPL, you need not read
further.

• Part II presents an intermediate subset of CPL. Mastering this subset adds considerably
to the power of the CPL programs you can write, while not introducing any great
complexity. Many users will want to work with this subset.

• Part III presents the additional features that make up full CPL. In addition, it contains a
fuller explanation of how CPL evaluates expressions, and a reference section on CPL's
command functions. Although any user may want to refer to some part of this
material, Part III as a whole is of most use to experienced programmers.

This manual assumes that you are familiar with general programming concepts, the PRIMOS®
operating system, and the ED text editor. If you are not familiar with PRIMOS or ED, you should
read

• Prime User's Guide
• New User's Guide to EDITOR and RUNOFF

Related Documentation
The following Prime publications are referred to in this manual:

Prime User's Guide (DOC4130-4LA)
New User's Guide to EDITOR and RUNOFF (FDR3104-101B)
PRIMOS Commands Reference Guide (DOC3108-6LA)
Subroutines Reference Guide, Volume II (DOC10081-1LA) and its update (UPD10081-11A)
Advanced Programmer's Guide, Volume II (DOC10056-2LA)

IX

CPL User's Guide

Some familiarity with structured programming concepts (such as DO loops and
IF...THEN...ELSE constructs) is also helpful. If you haven't done structured programming before,
you may want to refer to one of the many structured programming texts on the market. Two
useful texts are

• Conway and Gries. An Introduction to Programming: A Structured Approach.
Cambridge, MA: Winthrop, 1973

• Xenakis. Structured PL/I Programming. Boston, MA: Duxbury Press, 1979

Prime Documentation Conventions
The following conventions are used in command formats, statement formats, and in examples
throughout this document. Examples illustrate the uses of these commands and statements in
typical applications.

Convention Explanation
UPPERCASE In command formats, words in

uppercase indicate the names of
commands, options, statements,
and keywords. Enter them in ei
ther uppercase or lowercase.

lowercase In command formats, words in
lowercase indicate variables for
which you must substitute a suit
able value.

Abbreviations If an uppercase word in a com-
in format mand format has an abbreviation,
statements the abbreviation is underscored.
Brackets Brackets indicate a CPL function

[] call. They must be entered literal
ly.

Single-line Single-line braces indicate that the
braces { } enclosed item is optional.
Multiline Multiline braces indicate that one
braces of the enclosed items is required.

Braces In CPL function calls, braces
within within brackets indicate an op-
brackets tional argument.

[{ }]

Example
&ARGS

&ARGS argl; arg2

ABBREV

[EXISTS object]

DATE {option}

&EXPAND 4 2!L VLOFFJ
[EXISTS pathname {type}]

About This Book

Convention

Ellipsis

Parentheses
()

Hyphen

Italics
Bold italics
in examples

Bold type
in examples

Angle brackets
in messages

< >

Explanation
An ellipsis indicates that the pre
ceding item may be entered more
than once.
In command or statement formats,
you must enter parentheses exact
ly as shown.
Wherever a hyphen appears as the
first character of an option, it is a
required part of that option.
In text, italics indicate variables.
In examples, user input is in bold
italics but system prompts and
output are not.

In CPL program examples, all
statements are in bold typeface.

In messages, text enclosed within
angle brackets indicates a variable
for which the program substitutes
the appropriate value.

Example
&ARGS name-1. ; name-n

DIM array (row, col)

[DATE -USA]

JEFF is the value of filename.

OK, RESUME MY_PROG
This is the output
of MY_PROG.CPL
OK,
&D0

RESUME FIRSTPROG
RESUME SECONDPROG

SEND
The value <text>

XI

Parti
The Basic Subset

Introduction to CPL

This chapter describes what CPL is and what it can be used for. It tells you how to create and run
a CPL program. It also provides a brief explanation of how the system executes a CPL program.

What Is CPL?
CPL is the Prime Command Procedure Language. A procedure language is used to invoke
command operations. One example of a command operation is the command to execute a
program; for example,

RESUME MYPROG.RUN

One common use of procedure language is to automate frequently-used sequences of command
operations. Rather than invoke each command operation from your terminal, you specify the
sequence of command operations once in a procedure language program. When you execute the
procedure language program, it invokes all of these command operations in the sequence you
specified.
CPL is an extremely sophisticated procedure language. Using CPL, you can execute user-written
programs, invoke Prime system software, and issue PRIMOS commands. The CPL language
includes directives that you can use to control decision making, branching, and looping. It has
sophisticated features for the transfer of argument values. CPL also provides many function calls
that perform specific operations.
CPL is easy to use. Non-programmers can create working CPL programs with minimal training.
Programmers can draw upon powerful and flexible features of CPL to perform a wide variety of
control and computational tasks.

How Might You Use CPL?
Suppose that you frequently compile three FORTRAN 77 programs. The commands that do this
might be

Fll JEFF -B RICHS>BIN>JEFF. BIN
Fll DICK -B RICHS>BIN>DICK.BIN
Fll BARRY- -B RICHS>BIN>BARRY. BIN

1-1

CPL User's Guide

This is an annoying amount to type many times a day. But you can type it once into a text file
(using Editor or EMACS) to create a CPL program (named, say, COMP.CPL). Then you can run
the CPL program with the simple command

R COMP.CPL

to compile all three programs.
The convenience gained by creating programs composed exclusively of PRIMOS commands is
just the beginning of what CPL offers. CPL is modeled on high-level algorithmic languages (such
as PLA and PASCAL). Thus, it also offers you the convenience of

• Variables
• Function calls
• How of control directives (such as &IF...&THEN...&ELSE, &GOTO, &SELECT)
• Error handling

By using these features, you can create sophisticated CPL programs. But before learning the
details of the CPL language, you should understand how to create and run a CPL program.

Naming CPL Programs
You can write a CPL program using any text editor, such as ED or EMACS. CPL program files
must have names ending in .CPL (for example, TEST.CPL, COMP.CPL). The .CPL suffix
identifies the file as a CPL program to the RESUME, JOB, and PHANTOM commands.
However, you usually do not have to specify the .CPL suffix when you run the program. (You
may specify the suffix if you wish, as shown by the examples in this book.)

Running CPL Programs
CPL is an interpreted language. This means that each line of a CPL program is interpreted (put in
machine-readable form) each time the program is run. Therefore, you do not have to compile,
link, or load a CPL program; you simply write your CPL program into a file, then execute that
file to run the program.
PRIMOS includes a special command, CPL, for running CPL programs. You can also use the
other PRIMOS run commands, RESUME, PHANTOM, and JOB to run a CPL program. You can
run CPL programs interactively using the RESUME or CPL commands. You can run a CPL
program as a phantom using the PHANTOM command, or as a batch job using the JOB
command. Thus, our sample program, COMP.CPL, can be run by any of the following
commands:

• CPL COMP
• RESUME COMP.CPL

1-2

Introduction to CPL

• PHANTOM COMP.CPL
• JOB COMP.CPL

For each command, you can supply the full filename (COMP.CPL), or the filename without its
suffix (COMP). If you supply just the filename COMP, the four run commands assume a
filename suffix. The CPL, PHANTOM, and JOB commands locate the file COMP.CPL and
execute it as a CPL program. When you supply the filename COMP to the RESUME command, it
looks for the file COMP with the .RUN, .SAVE, or .CPL suffix. RESUME first looks for an
executable code file with the .RUN suffix. RESUME next looks for an executable code file with
the .SAVE suffix. If neither COMP.RUN nor COMP.SAVE exist in the current directory,
RESUME looks for the file COME CPL and executes it as a CPL program.
If the file COMP.CPL doesn't exist, the four run commands look for a file named COMP with no
suffix. If COMP exists, the CPL command runs it as a CPL program. RESUME runs COMP as a
runfile. PHANTOM and JOB run COMP as a command input file.

Running CPL Programs as Commands
If you use a CPL program frequently, you may wish to create a command that runs that CPL
program. A command can be easily invoked from any attach point. You invoke a command by
typing its name alone, with no run command, directory name, or suffix. You can establish a CPL
program as a command in three ways:

• Place the CPL program in the system's command directory.
• Establish the CPL program's directory as a command directory.
• Establish an abbreviation that runs the CPL program.

CPL Programs in the System's Command Directory: The programs that carry out most
PRIMOS commands are located in the system's command directory, CMDNCO. When you issue a
command, one of these programs is run. You issue a command by just typing the name of the
command. For example, when you type the command LD, you are actually running the program
CMDNCO>LD.RUN.
You can also run user-written CPL programs that are in directory CMDNCO by simply typing the
name of the program. For example, you could execute CMDNC0>MYPROG.CPL by typing
MYPROG.
On most systems, access to CMDNCO is restricted to the System Administrator. Request that
commonly-used CPL programs be placed in CMDNCO, especially those CPL programs that are
run by many users. A CPL program in CMDNCO can be executed as a command by any user. A
CPL program in CMDNCO should not have the same name as a .RUN or .SAVE file in
CMDNCO.

CPL Programs in a User's Command Directory: You can execute a CPL program as a
command if the name of its directory is listed in COMMANDS. COMMANDS is a search list that
contains a list of directories; PRIMOS automatically searches those listed directories for the
desired program.

1-3

CPL User's Guide

For example, if you set MYDIR in your COMMANDS search list, you can execute
MYDIR>MYPROG.CPL by typing MYPROG. PRIMOS searches each directory listed in
COMMANDS until it finds a program named MYPROG. It then executes that program.
Therefore, no other program named MYPROG should be located in MYDIR or in any of the
directories listed above MYDIR in the COMMANDS search list. If MYPROG.RUN or
MYPROG.SAVE exists in MYDIR, one of those programs is executed rather than
MYPROG.CPL.
A CPL program in your directory can only be executed as a command by those users that have set
that directory in their individual COMMANDS search lists. A search list must be reset after each
login or process initialization. For further information on setting the COMMANDS search list,
refer to the Advanced Programmer's Guide, Volume II.

CPL Program Abbreviations: If you use a CPL program frequently, you may wish to create
an abbreviation to run the CPL program. An abbreviation, like a command, can be executed by
typing its name alone, with no run command, directory name, or suffix.
You can use an abbreviation to execute several PRIMOS commands. For example, you could
create the abbreviation RUNCPL that expands into the commands RESUME
MYDIR>MYPROG.CPL and RESUME YOURDIR>TESTPROG.CPL. Typing RUNCPL
executes both commands.
A user abbreviation is unique to that user. If both a command and an abbreviation exist with the
same name, PRIMOS executes the abbreviation. Abbreviations are further described in the Prime
User's Guide.

How Does CPL Work?
CPL has two parts: the language, and the interpreter. The CPL language allows you to write CPL
programs that contain either a sequence of PRIMOS commands or a combination of PRIMOS
commands and CPL directives. The commands give instructions to PRIMOS, or to one of its
subsystems. The directives give instructions to the CPL interpreter itself. (PRIMOS never sees
these directives; it sees only the commands that the interpreter passes to it.)
Instructions to the CPL interpreter are identified by special characters. In CPL, directives are
preceded by ampersands (for example, &IF, &GOTO). Variable references are enclosed in
percent signs (for example, %VAR%). Function calls are enclosed in brackets (for example,
[NULL A]).
When you execute a CPL program, the CPL interpreter first evaluates variables and function calls
and replaces them with their correct values. It then interprets and acts upon CPL directives.
Finally, it passes the resulting PRIMOS commands to PRIMOS for execution. This means that
not only can CPL execute a long sequence of PRIMOS commands pre-specified in the CPL
program, but it also can modify the execution of those PRIMOS commands based on the current
values of variables at the time you execute the CPL program. Let's take a closer look at how the
interpreter accomplishes this.

1-4

Introduction to CPL

The CPL Interpreter
When you run a CPL program, PRIMOS hands each line in turn to the CPL interpreter. If the line
consists of a PRIMOS command (for example, F77 JEFF), the interpreter hands it to the PRIMOS
command processor for execution. This is diagrammed in Figure 1-1.

CPL file contains:

CPL interpreter passes commands on:

Standard command processor sees:

Figure 1-1
Command Execution via CPL

If a CPL command contains either variables or function calls, the CPL interpreter evaluates these
operations before passing the command to PRIMOS. The CPL interpreter replaces each variable
or function call with a literal value (a character string) before executing the CPL command.

Variables: The CPL interpreter replaces each variable in a CPL command with its current
value before executing the command. (You set the current value of each variable elsewhere in the
program.) For example, if JEFF is the current value of a variable called FILENAME, the CPL
interpreter performs the substitution shown in Figure 1-2. When the CPL interpreter encounters
this line, it identifies FILENAME as a variable reference by the percent signs that surround it. The
CPL interpreter replaces this variable reference with its current value. In this case, the CPL
interpreter removes the characters %FILENAME% from the command and replaces them with the
characters JEFF. It then hands the modified command to the command processor for execution.

r
r 1-5

CPL User's Guide

CPL file contains:

CPL interpreter substitutes
variable value for variable

reference:

Command processor sees:

F77 °/ofilename%

v

F77 JEFF

< i 5

i '

F77 JEFF

Figure 1-2
Execution of Command Containing a Variable

Function Calls: The CPL interpreter replaces each function call in a CPL command with a
literal value before executing the command. First, the CPL interpreter executes the function call.
When the function call completes, it returns a literal value (a character string). The CPL
interpreter replaces the function call with this literal value, then hands the modified command to
the command processor for execution.

Figure 1-3 shows an example of a function call in a CPL command. This CPL command spools a
report to a printer. It uses the CPL function DATE to supply the current date as part of the name
of the report.
When the CPL interpreter sees the square brackets that mark the function call, it evaluates the
function. In this example, the CPL interpreter calls the DATE function. The DATE function
determines the current date, converts the date to the desired format (in this case, the -TAG
format: YYMMDD), and returns this value as a character string. The CPL interpreter substitutes
the character string representing this date, 870623 (that is, June 23, 1987), for the character string
[DATE -TAG]. The CPL interpreter then hands this command to PRIMOS for execution.

1-6

Introduction to CPL

CPL file contains:

CPL interpreter evaluates
function call, substitutes

value of function for
function call in command

line:

Command processor sees:

SPOOL REPORT.[DATE TAG]

SPOOL REPORT.870623

SPOOL REPORT.870623

Figure 1-3
Execution of Command Containing a Function Call

Directives: CPL interprets a word beginning with an ampersand (&) as a CPL directive. If a
line begins with a CPL directive, the interpreter recognizes the line as a CPL directive statement.
For example,

&IF %A% > %B% &THEN F77 %FILENAME%

In this example, the CPL interpreter replaces the variable references %A%, %B%, and
%FILENAME%, with their current values. The current values of these variables (3, 1, and JEFF)
are established by other statements in the CPL program. The CPL interpreter then executes the
&JP directive. The &IF directive tests to see if 3 is greater than 1. Since 3 is greater, the CPL
interpreter executes the &THEN directive, passing the command F77 JEFF to the command
processor for execution. This sequence of actions is diagrammed in Figure 1-4.

1-7

CPL User's Guide

CPL file contains
the statement:

CPL interpreter
reads the statement,
substituting current
values for variable

references:

CPL interpreter
performs the &IF test
and returns the result:

Because the test condition
is TRUE, CPL executes
the &THEN directive,
passing the command

F77 JEFF to the
command processor:

Command processor
executes the command:

&IF°/oa% > %b% &THENF77°/ofilename°/o

False

True

F77JEFF

Figure 1-4
Execution of a Sample CPL Directive

Now that you are familiar with how the CPL interpreter operates, proceed to the chapters that
follow, which describe how to write CPL programs. These chapters describe in much greater
detail the features of the CPL language briefly mentioned in this chapter, as well as many other
features of CPL.
As described in the preface, material in this book is divided into three levels of difficulty: basic
CPL (for all users, including non-programmers); intermediate CPL (for users familiar with
programming concepts); and full CPL (advanced concepts primarily of use to experienced
programmers).

1-8

The Basics of CPL

This chapter describes the essential features of CPL. It describes the basic variables, directives,
and functions used in most CPL programs. This chapter and the formatting rules found in the
next chapter provide you with all the information necessary for writing most CPL programs.

PRIMOS Commands in CPL Programs
The simplest CPL programs are those composed entirely of PRIMOS commands. This type of
CPL program consists of a sequence of PRIMOS commands, one per line. The example that
follows is a complete CPL program that issues PRIMOS commands to open a COMOUTPUT
file, display the current date, compile three FORTRAN 77 programs, then close the
COMOUTPUT file.

COMO COMPILE.COMO
DATE
F77 THISFILE -XREF
F77 THATFILE -XREF -321
F77 TOTHERFILE -DEBUG
COMO -E

The above example is a complete CPL program. CPL programs do not require any special
statements identifying the file as a CPL program. The basic format of a CPL program is one
statement per line. Formatting rules for CPL programs are further discussed in Chapter 3.

Which PRIMOS Commands Can You Use?
CPL programs can contain any of the following PRIMOS commands:

• All compiler commands: CBL, CC, F77, PASCAL, PL1G, PMA, RPG, and the like.
• All commands that execute programs. For example,

R THISPROG.RUN
R THATPROG.SAVE
CPL ONEPROG.CPL
PH OTHERPROG
BASICV MYPROG

2-1

CPL User's Guide " \

Commands that do not invoke a subsystem or initiate a dialog. For example,

ATTACH
LISTF
CREATE
DELETE
CNAME
SET_ACCESS
SET_DELETE
SET_SEARCH_RULES
SIZE

Commands that invoke interactive subsystems. For example,

ED
BIND
MAGNET
SORT

For commands of this type, you must either supply additional subcommands from the
terminal each time you run the CPL program or specify these subcommands within the
CPL program itself. If you want the CPL program to supply these subcommands, you
must use CPUs &DATA directive, explained later in this chapter.

Which Commands Can't You Use?
Do not use the following commands in a CPL program:

• COMINPUT (in any form)
• CLOSE ALL
• DELSEG ALL
• ICE
• LOGIN or LOGOUT

Any of these commands abort execution of the program.
If you have existing COMINPUT files, you can easily convert them to CPL programs. For
instructions on how to do so, see Appendix D.

2-2

The Basics of CPL

Using Variables in CPL Programs
Although CPL programs composed entirely of PRIMOS commands can be extremely useful,
most users want the flexibility that comes from using variable data in their commands. Variables
are easily established in CPL. In their simplest form, a variable is established with the &ARGS
directive, and references to the variable are indicated by percent signs. For example, the following
CPL program (named COMP77.CPL) compiles any F77 source file:

&ARGS FILENAME
COMO %FILENAME%.COMO
DATE
F77 %FILENAME% -DEBUG
COMO -E

In this example, the &ARGS directive defines one variable, FILENAME. Each time you run the
CPL program, you supply an argument value to be substituted for the variable FILENAME
throughout the CPL program. You specify this argument value as part of the CPL program run
command, following the name of the CPL program that you wish to execute. For example,

R COMP11.CPL JEFF

The &ARGS directive takes the character string JEFF and assigns it to the variable FILENAME.
JEFF is now the value of FILENAME.
Therefore, each time the variable reference, %FILENAME%, is found in this program, the CPL
interpreter substitutes the character string JEFF for the character string %FTJLENAME%. Thus, the
command

COMO %FILENAME%.COMO

becomes

COMO JEFF.COMO

while the command

F77 %FILENAME% -DEBUG

becomes

F77 JEFF -DEBUG

Note that the variable, FILENAME, is not enclosed in percent signs when it is being defined in the
&ARGS directive, but is enclosed in percent signs whenever it is referenced — that is, whenever
its value, rather than its name, is wanted.

2-3

CPL User's Guide

Notes
When you supply an argument value that contains letters to the
&ARGS directive, the CPL program receives that value as all
uppercase letters. For example, if you run the program with R
COMP11.CPL Jeff, the value of the %FILENAME% argument is
JEFF.
When a variable reference is juxtaposed to another character string,
with no blanks between them (as in %FILENAME%.COMO), the
value of the variable is concatenated with the other string (as in
JEFF.COMO). Two or more variable references may also be
juxtaposed (as in %FILENAME%%FTLENAME%). Again, a single
string results (JEFFJEFF).

Multiple Arguments
A CPL program can contain multiple arguments. However, a CPL program should normally only
contain one &ARGS directive. To specify multiple arguments for this single &ARGS directive,
you list the variable names on the &ARGS directive line, separating the variable names with
semicolons. For example,

&ARGS FILENAME; COMPILER

Now you can write a more general CPL file, called COMPILE_ALL.CPL, that can compile FTN,
F77, or PL1G source files. It reads

&ARGS FILENAME; COMPILER
COMO %FILENAME%.COMO
DATE
%COMPILER% %FILENAME% -64V -DEBUG
COMO -E

You can invoke this CPL program by typing

R COMPILE_ALL.CPL JEFF Fll

which creates the command

F77 JEFF -64V -DEBUG

In general, arguments are defined by their position in the command line used to run the CPL
program. In the above example, the first argument, JEFF, is assigned to FILENAME, the first
variable in the &ARGS directive line. The second argument, F77, is assigned to the second
variable, COMPILER. Giving the arguments in reverse order,

R COMPILE_ALL.CPL Fll JEFF

2-4

The Basics of CPL

assigns F77 to FILENAME and JEFF to COMPILER. It is, therefore, extremely important that the
sequence of arguments you supply when you invoke a CPL program is the same as the sequence
of the variable names that follow the &ARGS directive within that CPL program.

Omitted Arguments
If you omit an argument from the command line used to invoke the CPL program, the CPL
interpreter sets its value to the explicit null string. A null string is indicated by two single
quotation marks (")• The PRIMOS command processor then removes the null string before
executing the command.
In the above example, the command

R COMPILE_ALL.CPL TESTFILE

assigns the value TESTFILE to the first variable, FILENAME, and assigns the null string to the
second variable, COMPILER. The resulting PRIMOS command first becomes

" TESTFILE -64V -DEBUG

and then becomes

TESTFILE -64V -DEBUG

Since TESTFILE is not a legal command, PRIMOS returns you to command level with an error
message.
Note that because arguments are positional, you can only omit the last argument(s) from a
command line list of arguments. For this reason, list all essential arguments in the &ARGS
directive before listing arguments that you might wish to omit when running the CPL program.
CPL offers several ways to deal with null arguments. Some simple ones are explained later in this
chapter. Others are described in Chapter 5, and in Chapter 13.
CPL's &ARGS directive can be expanded to

• Check the type of each supplied argument for accuracy
• Supply default values for omitted arguments
• Make arguments position-independent

The first two of these facilities are explained in Chapter 6. The third is explained in Chapter 13.

Decision Making in CPL Programs
When a CPL program contains only PRIMOS commands (or PRIMOS commands plus variables
and the &ARGS directive), it is executed sequentially; that is, each command (each line of the
file) is executed in turn.

2-5

CPL User's Guide

Sometimes, however, you may want to alter the sequence in which the commands are executed.
To alter the flow of control in this way, you use CPL's flow of control directives. The simplest
and most important of these is the &IF directive.

The &IF Directive
The format of the &IF directive is

&IF test &THEN statement

test is a logical expression that can be determined to be TRUE or FALSE (for example, &IF A =
B). statement is either a PRIMOS command or a CPL directive (for example, RESUME
MYPROG, or &GOTO MAINROUTINE).
test may test variables, constants, functions, or expressions against each other. For example,

& IF %A% = 10 (variable and constant)
&IF %A% = JEFF (variable and constant)
&IF %A% > %B% (two variables)
&IF %A% < %B% + %C% (variable and expression)
&IF %A% + %B% = %D% + 30 (two expressions)
&IF [LENGTH %A%] < 100 (function and constant)

The arithmetic and logical operators that can be used are shown in Table 2-1. They are explained
in detail in the discussion of the CALC function in Chapter 12. Note that operators must be
separated by at least one space from their operands.
test may also test the truth or falsity of logical functions (for example, &IF [NULL %A%]). This
feature is explained later in this chapter.

How the &IF Directive Works: When the CPL interpreter reads an &IF directive, it
substitutes current values for any variable references, expressions, or function calls it finds. Then
it tests to see if test is true or false. If test is true, the interpreter executes the &THEN statement.
If test is false, the interpreter skips over the &THEN statement and proceeds to the next line of
the CPL program.

An Example: Suppose you compile a program frequently, but only occasionally want to spool
the listing file. You can use an argument and the &IF directive to tell the CPL program whether
or not to spool the listing file, as shown in the following program (called COMPSPOOL.CPL):

/*This program compiles and optionally spools a F77 program.
/*You type the value YES for the second argument
/* to spool the l is t ing fi le.

&ARGS FILENAME; SP
COMO %FILENAME%.COMO
DATE
F77 %FILENAME% -L %FILENAME%.LIST -XREF

/*If desired, spool the program listing.
&IF YES = %SP% &THEN SPOOL %FILENAME%.LIST -AT MS3
COMO -E

2-6

The Basics of CPL

Note
As this program shows, you can use /* to place comments in CPL
programs. For full rules governing comments, see Chapter 3.

If you give the command

R COMPSPOOL JEFF YES

then the test, YES = YES, is true, and the listing file, JEFF.LIST, is spooled. If you give the
command

R COMPSPOOL JEFF

the test, YES = ", is false (the omitted argument is set to the null string). In this case, the listing
file is not spooled. Instead, the CPL interpreter ignores the &THEN statement, and passes on to
the next line in the program (in this case, COMO -E). Figure 2-1 shows the flow chart for these
statements.

Table 2-1
CPL Operators

Operator Meaning
Arithmetic Operators

+ Addition, unary plus
- Subtraction, unary minus
* Multiplication
/ Integer division (result is truncated

to integer, fractional remainder is
dropped)

Logical Operators
A Not
& And
I Or

Relational Operators
= Equal
< Less than
> Greater than
<= Less than or equal
>= Greater than or equal
A = Not equal

r
r 2-7

CPL User's Guide

"1

cFrom Previous
Command

Does
%sp% = YES

? ^ N o

Yes

Spool File

Close Command
Output File

c To Next
Command

Figure 2-1
Sample &IF Statement

2-8

The Basics of CPL

r

The &ELSE Directive
The &EF directive may be used by itself, as in the previous example, or it may be followed by the
&ELSE directive. When used by itself, the &IF test tells the interpreter either to execute the
&THEN clause and proceed to the next line of the program or to skip the &THEN clause and
proceed to the next line of the program. In either event, the interpreter always executes the line
after the &IF directive (unless the &THEN clause is executed and performs a jump to somewhere
else in the program).
When the &IF and &ELSE directives are used together, they tell the interpreter to choose between
two courses of action. Either the &JP test is true and the &THEN clause is executed, or the &IF
test is false and the &ELSE clause is executed. In either case (barring a jump statement) the next
statement executed is the statement after the &ELSE clause.
The format of the &ELSE directive is

&IF test &THEN statement-1
&ELSE statement-2

If test is TRUE, statement-1 is executed. If test is FALSE, statement-2 is executed. For example,
suppose you compile many FTN programs and a few F77 programs. You may want a program
(called COMPELE2.CPL) that looks like this:

&ARGS FILENAME; COMPILER
&IF %COMPILER% = F77 4THEN F77 %FILENAME% -DEBUG -321
&ELSE FTN %FILENAME% -64V
TYPE 'Just ran a compilation'

If you give the command

R COMPILE2. CPL THISFILE Fll

the &IF test (F77 = F77) is true, and THISFILE is compiled by the F77 compiler. If you give any
other value for the COMPILER argument — or if you omit that argument altogether — the &IF
test is false, and THISFILE is compiled by the FTN compiler. In either case, flow of control
continues with the next statement after the &ELSE clause in the program. Figure 2-2 shows the
flow chart for these statements.

Nested &IFs
&IF directives may be nested; that is, a &THEN or &ELSE statement may invoke another &IF
directive. Each &IF directive must have its own &THEN clause. Nested &IF directives are
discussed in Chapter 8.

2-9

CPL User's Guide

Compile %filename%
Using F77 Compiler

Compile %filename°/o
Using FTN Compiler

i '

(

To Next
Command

Figure 2-2
Sample &IE..&THEN...&ELSE Statement

2-10

The Basics of CPL

r
r

&DO Groups
In the previous examples, the &THEN and &ELSE directives execute single commands. These
directives may also execute groups of commands, by using the &DO and &END directives to
mark the beginning and end of a &DO group of commands. The format for &DO groups is as
follows:

&DO
statement 1
statement 2

statement n
&END

Normally, each statement in a CPL program represents one action. In a &DO group, however, all
the statements between the &DO and the &END represent a single action to the interpreter. Thus,
instead of typing

&IF test &THEN statement-1
&ELSE statement-2

you can type

&IF test &THEN &DO
fi r s t - g r o u p - o f - s t a t e m e n t s
SEND

&ELSE &DO
second-g roup-o f -s ta tements
&END

For example, you can use &DO groups to modify an earlier sample program, COMPILE2.CPL,
so that it compiles three modules instead of one:

&ARGS FILENAME; COMPILER
&IF %COMPILER% = CBL &THEN &DO

CBL %FILENAME%1
CBL %FILENAME%2
CBL %FILENAME%3
SEND

&ELSE &DO
%COMPILER% %FILENAME%1 -64V
%COMPILER% %FILENAME%2 -64V
%COMPILER% %FILENAME%3 -64V
&END

The statements inside the &DO group are indented for ease of reading. CPL allows indentation
wherever you wish it; it never demands it.

2-11

CPL User's Guide

The &GOTO Directive
The &GOTO directive permits you to jump from one part of a CPL program to another part of
the program (either forward or backwards). CPL lends itself so well to structured programming
that you may never need the &GOTO directive. However, if you do need or want it, here's how to
do it:

1. Use the &LABEL directive to establish a label; for example, &LABEL HERE. A label
is a line in your CPL program that identifies the destination of the jump performed by
the &GOTO directive. The &LABEL directive must be on a line by itself, immediately
preceding the statement or statements to be executed.

2. Use the &GOTO directive to transfer control from the current location to the specified
&LABEL directive, for example, &GOTO HERE.

The format is

&GOTO label-name

&LABEL label-name

Once control has passed to the labeled statement, it continues sequentially until redirected by 7
some other flow of control directive or halted by the end of the program. Here is an example of
&GOTOs used with the &IF directive:

&ARGS FILENAME; COMPILER
COMO COMPILE.COMO
DATE

/* Test for F77 compiler
& I F % C O M P I L E R % = F 7 7 & T H E N & G O T O C O M P _ F 7 7 ^ ^

& E L S E & G O T O C O M P _ A N Y " ^
/ * 1

&LABEL COMP_F77 /* First alternative
F77 %FILENAME% -B *>F77>%FILENAME%.BIN -L %FILENAME%. LIST -64V
&GOTO WRAPUP
/ *

&LABEL COMP_ANY /*Second alternative
%COMPILER% %FILENAME% -L %FILENAME%.LIST -64V
/ *
/*Both alternatives finish off the same way

&LABEL WRAPUP
SPOOL %FILENAME%.LIST
COMO -E

2-12

The Basics of CPL

^ When One CPL Program Runs Another
By using the RESUME or CPL command, one CPL program can run another. For example, a
CPL program called ACCTS_UPDATE.CPL might contain the following commands:

COMO ACCTS_UPDATE.COMO
DATE
CPL NEW_ACCTS
CPL ACCTS_CLOSED
CPL ADDRESS.CHANGES
COMO -E
SPOOL ACCTS_UPDATE.COMO
&RETURN

r

r

The transfer of control that occurs when one program runs another is much the same as the
transfer of control when a user runs a program. Each program begins with a run statement and
ends with a return to the place from which the program was invoked (the &RETURN statement
mentioned here is described later in this chapter).
For example, when you run ACCTS_UPDATE.CPL, the following actions occur:

1. You give the command

CPL ACCTS_UPDATE

2. PRIMOS opens the file ACCTS_UPDATE.CPL on some available file unit, and
accepts commands from it.

3. ACCTS_UPDATE finishes with a &RETURN directive.
4. PRIMOS closes the file and returns control to you.
5. You give the next command.

Similarly, when ACCTSJJPDATE.CPL invokes NEW_ACCTS.CPL, the following actions
occur:

1. ACCTS_UPDATE passes the command CPL NEW_ACCTS to PRIMOS.
2. PRIMOS opens the file NEW_ACCTS.CPL on some available file unit, and accepts

commands from it.
3. NEW_ACCTS ends with a &RETURN directive.
4. PRIMOS closes the file and returns control to ACCTSJJPDATE.
5. ACCTS_UPDATE passes its next command to PRIMOS.

When one CPL program runs another, each has (or may have) its own set of arguments and
variables. If NEW_ACCTS needs any arguments, ACCTSJJPDATES must pass them to it, as in
the following example:

CPL NEW ACCTS WEST BRANCH

2-13

CPL User's Guide

In this case, the NEW_ACCTS program includes an &ARGS directive to receive a value for the
BRANCH variable.

By using CPL programs to run other CPL programs, you can construct large, complex CPL
programs from smaller independent modules. This type of structured, modular program design is
much easier to test and maintain than a CPL program that relies upon numerous &GOTO
directives.

Function Calls
Like other high-level languages, CPL provides built-in functions to simplify frequently made
tests and computations. Functions are tools for quickly performing complex operations; for
example, CPL provides a function that determines the current date.
The CPL interpreter locates and performs the appropriate function when you issue a function
call. Function calls in a CPL program are easily identified; they are always enclosed in square
brackets. Within the square brackets, a function call consists of the name of the function followed
by its arguments (that is, [FUNCTION argl arg2]).
When a function call appears in a command or directive, the CPL interpreter first performs the
function operation and substitutes the resulting character string for the function call. The
interpreter then executes the command or directive.
If both variables and function calls are present in a statement, the variables are evaluated first and
the function calls next. This allows the use of variables within function calls.
The following sections describe the NULL and EXISTS functions, two of the most commonly
used CPL functions. CPL provides many other functions as well; the available CPL functions are
described in Chapter 12.

The NULL Function
One of the most useful CPL functions is the NULL function. Its format is

[NULL var]

where var is any CPL variable.
The NULL function tests var to determine if it is a null character string. If var is null, the NULL
function returns the character string TRUE. If var is not null, the NULL function returns the
character string FALSE. Since the value of an omitted argument is the null string, the NULL
function can be used in &IF directives to test for an omitted argument.

An Example: You can test for a null argument to set the home directory for some procedure.
For example, a CPL program that begins

&ARGS DIR
&IF [NULL %DIR%] &THEN ATTACH MYDIR

&ELSE ATTACH %DIR%
2-14

The Basics of CPL

r

allows you to make any desired ATTACH by specifying DIR; omitting DIR attaches you to your
default choice (MYDIR).

Note

Remember that the &ARGS directive assigns values in positional
order; that is, the first argument given is assigned to the first variable
specified, and so on. Therefore, if you omit any one argument from a
list of two or more, the last variable in the &ARGS directive is the one
that gets set to the null string. If you omit two arguments, the last two
variables are set to the null string, and so on. Therefore, when you use
the NULL function to test for omitted arguments, always test first for
the last argument in line. If it is not null, none of the others can have
been omitted accidentally.

The EXISTS Function
The EXISTS function is a Boolean function that determines

• If a file system object exists
• If the file system object matches a specified type (file, directory, access category, or

segment directory)

The format of the EXISTS function call is

[EXISTS pathname {type}]

pathname is the name or pathname of a file or directory.

type is an optional argument. You can omit type or specify one of the following values:

-ANY
-ACCESS_CATEGORY or -ACAT
-DIRECTORY or -DIR
-FILE
-SEGMENT_DIRECTORY or -SEGDIR

If type is present, then the EXISTS function returns the value TRUE if pathname exists and is of
the right type. It returns the value FALSE if pathname does not exist or if it is of the wrong type.

For example, assume a directory that contains three files: PAYROLL.CBL, COMPILE_ALL.CPL,
and PHONE_LIST. Assume that it also contains two subdirectories: WORKFILES and MEMOS.
If you are attached to this directory, the function call

[EXISTS PHONE_LIST -FILE]

returns the value

TRUE

2-15

CPL User's Guide

because PHONEJLIST is a file in the current directory. The function call

[EXISTS MEMOS -SEGDIR]

returns the value

FALSE

because MEMOS is not a segment directory.

If type is not present, the EXISTS function merely reports on the existence or non-existence of
pathname. For example,

[EXISTS MEMOS]

returns the value TRUE, while

[EXISTS PAYROLL.F77]

returns the value FALSE.

Note
The EXISTS function does not use the PRIMOS search rules facility.
Therefore, pathname must either be a full pathname or a filename. If
pathname is a filename, EXISTS attempts to locate that file (or
SEGDIR, ACAT, or subdirectory) within the currently attached
directory. The EXPAND_SEARCH_RULES function, described in
Chapter 12, permits you to invoke the search rules facility from a CPL
program.

Examples: The first example checks to see if a file with the suffix .NEW has been written. If
it has, the program calls ED to allow its user to edit this new file. If the new file docs not exist,
the program requests the older version:

&IF [EXISTS MEMO.NEW] &THEN ED MEMO.NEW
&ELSE ED MEMO

The second example uses the NOT symbol (A) to reverse the value returned by EXISTS. This
program attaches to a specific directory. If the directory does not exist, the program creates it
before doing the ATTACH:

&IF A [EXISTS SUBDIR] &THEN CREATE SUBDIR
ATTACH *>SUBDIR

2-16

The Basics of CPL

r

Using CPL With Subsystems: &DATA Groups
Many Prime utilities, such as ED (a text editor) and BIND (a program linker), require
subcommands to accomplish their function. Similarly, many user programs require that data be
typed in from the terminal. CPL's &DATA directive allows CPL programs to supply the data or
subcommands needed by these programs and utilities. A program run within a &DATA group is
referred to as a subsystem.
&DATA groups resemble &DO groups in that both are groups of statements set off by an
opening directive (&DO or &DATA), and a closing &END. In each case, the statements within
the group are treated as a unit.
The format of the &DATA group is

&DATA command
statement-1
statement-2

statement-n
&END

command is the PRIMOS command that invokes the subsystem or user program; for example,
BIND filename.
statement-1 through statement-n represent the commands or data to be passed to the subsystem or
user program. As with all CPL statements, they may include variables, function calls, and
directives.
The &END statement, on a line by itself, ends the &DATA group.

Note
Commands within a &DATA group differ from other CPL commands
in that blank lines and blank spaces used for indentation are not
ignored. These blanks are passed on to the subsystem or user program.
This permits you to enter a carriage return when one is required by the
subsystem. Comments within a &DATA group are not passed on to
the subsystem, unless the comment is prefaced by a tilde (~).

Here is an example of a CPL program that compiles, loads, and executes a PL/I program:

&ARGS FILENAME
PLl %FILENAME% -DEBUG -B %FILENAME%.BIN /*Compile program
/ *
& D A T A B I N D / * I n v o k e B I N D

L O A D % F I L E N A M E % . B I N / * P r o v i d e B I N D c o m m a n d s
L I P L l L I B / * v i a & d a t a d i r e c t i v e s
L I

2-17

CPL User's Guide

DYNT -ALL
FILE

& E N D / * e n d o f & D A T A g r o u p
R % F I L E N A M E % . R U N / * e x e c u t e r u n - fi l e

Terminal Input in &DATA Groups
Sometimes you may want a CPL file to invoke a subsystem or user program, give a few
subcommands from within the CPL file, and then allow you to give further commands from your
terminal. You do this by including a &TTY directive inside the &DATA group.
It doesn't matter where inside the group the &TTY directive is. However, when the &DATA
group is executed, the &TTY directive is always executed last, after all other statements within
the group. For this reason, it is best to place the &TTY directive at the end of the &DATA group,
just before the &END statement.
This placement is shown in the following format:

&DATA
statement-1

statement-n
&TTY
&END

When execution reaches the &TTY directive, control returns to the user at the terminal. At this
point you can enter additional subcommands for the &DATA group subsystem. The commands
that you issue from the terminal are all interpreted as commands for the subsystem, until you
issue the command required to leave that subsystem.
When you issue a command from the terminal to leave the subsystem, control returns to the CPL
program. The command you issue to leave a subsystem depends on the subsystem; for example,

• Type QUIT in SEG or CONCAT.
• Type QUIT, FILE, or FILE filename in ED or BIND.
• RUNOFF or SORT finish their work and return control to command level

automatically.
Within a subsystem, you use the &TTY directive lo supply subsystem commands. However, the
&TTY directive can be used in other contexts for any type of input from the terminal, not just
commands. The section that follows describes some other uses for the &TTY directive.

Conditional Use of the &TTY Directive: You can use the &TTY directive as part of an
&IE..&THEN or &IF...&THEN...&ELSE directive within a &DATA group. For example,

&IF test &THEN &TTY
&ELSE another_statement

2-18

The Basics of CPL

In this example, the &TTY directive executes only if test is true. If test is false, then another̂ statement
is executed.

A Sample Program Using the &TTY Directive: One possible use of the &TTY directive is
to customize the Editor by writing a CPL program that does the following:

1. Invokes the Editor.
2. Issues a set of commands that set Editor modes and symbols as you want them.
3. Gives you control at the terminal.
4. Returns you to PRIMOS command level when the edit session is finished.

Such a file (called EDD.CPL) is shown below.

/* Usage: R EDD {filename}
/* Use filename to edit existing file
/* EDD sets edit symbols at terminal,
/* then returns you to interactive mode
/* inside the editor.
/* Leave the editor by typing Quit, File,
/* or File filename, as usual.
/* EDD will then return you to PRIMOS command level.
&ARGS FILENAME

/* Create variable EMPTYLINE to hold a null string
&SET_VAR EMPTYLINE :=

/ * En te r ed i to r
&DATA ED %f ilename %
&IF [NULL %filename%] &THEN %emptyline% /* Go into edit mode

SYMBOL SEMICO }
MODE COLUMN

&IF [NULL %filename%] &THEN %emptyline% /*Back to input mode
&TTY /* Give user control of editor
&END /* End &DATA group
&RETURN

Note
This program uses CPL's &SET_VAR directive followed by a
carriage return to define a variable, EMPTYLINE, and to set its value
to the true null string. This null string is then passed to the editor, if
necessary, to force it from input to edit mode and back again. The
&SET_VAR directive is discussed fully in Chapter 4.

2-19

CPL User's Guide

Two terminal sessions using this program are shown below:

OK, R EDD.CPL
INPUT

EDIT
SYMBOL SEMICO }
MODE COLUMN

INPUT
1 2 3 4 5 6 7

12345678901234567890123456789012345678901234567890123456789012345 67890123456789
This is a sample filo
This is tho sacond lino of tho filo

EDIT
FILE SAMPLE
OK,

OK, R EDD.CPL SAMPLE
EDIT

SYMBOL SEMICO }
MODE COLUMN

p23
.NULL.
This is a sample file
This is the second line of the file
BOTTOM
n - 1
This is the second line of the file
c/socond/ last
This is the last line of the file
fi l o
SAMPLE
OK,

Another Example of & TTY: This example shows how the &TTY directive can be used with
a user program. Assume a program (named PURCHASE) that asks for five items of information
about a customer purchase:

Dept. name:
Dept. number:
Customer name:
Acct. number:
Amount of purchase:

2-20

The Basics of CPL

r

r

r

A given department (for instance, the hardware department) uses a CPL program (named
PURCH.CPL) to invoke the PURCHASE program and supply it with its first two items of
information:

&DATA R PURCHASE
HDWR
38

&TTY
&END

The example as shown could be a complete CPL program or part of a larger CPL program.
A terminal session using this program is shown below:

OK, R PURCH.CPL
dept. name: HDWR
dept. number: 38
customer name: H.L. Smith
acct. number: 35684
amount of purchase: 536.89
OK,

Notes

By using a loop and the RESPONSE function, you can write a CPL
program that passes information for any number of purchases to
program PURCHASE. Chapter 5 explains the RESPONSE function.
Chapter 9 explains loops.
Closely related to the &TTY directive is the &TTY_CONTINUE
directive. This directive can receive input for a &DATA group from
the terminal, just as &TTY does. But, it can also receive input for a
&DATA group from a command input file. For information on this
directive, see Chapter 5.

How CPL Programs End: The &RETURN Directive
Every CPL program ends with the directive &RETURN. If you do not supply this directive as the
last line of the CPL program, the CPL interpreter automatically adds it at the end of the program.

2-21

CPL User's Guide

You may also use the &RETURN directive to stop the program before the end of the file. For
example,

&ARGS A

&IF %A% > 20 &THEN &RETURN
&ELSE &DO

SEND
&RETURN

When Errors Occur
Two types of errors can occur in CPL programs: CPL errors, which prevent the CPL interpreter
from executing its directives; and PRIMOS command errors, which prevent execution of the
commands contained in the file.
When a CPL error is encountered, the CPL interpreter halts execution of the CPL file and returns
you to PRIMOS command level with an explanatory error message. For example, misspelling
&ARGS produces the following message:

OK, R BAD_EXAMPLE

CPL ERROR 52 ON LINE 1.
"&ARGGS" is not a directive (statement) recognized by CPL.

SOURCE: &arggs foo

Execution of procedure terminated. BAD_EXAMPLE (cpl)
ER!

A list of CPL error messages is provided in Appendix B.
PRIMOS errors may represent one of two levels of severity: warning or error. By default
PRIMOS errors are handled as follows:

• If a warning occurs, the CPL file continues operation.
• If an error occurs, PRIMOS halts program execution and returns the user to PRIMOS

command level, usually with an error message and the ER! prompt. The error message
generally includes the name of the command or subsystem that generated it.

2-22

The Basics of CPL

You can override this default and establish a user-written message or handling routine that is
invoked when a PRIMOS error occurs. Chapters 10 and 15 show how to do this. You cannot
change the handling of CPL errors.

Displaying CPL Command Execution
When debugging a CPL program, it may be useful to display each CPL command as it is
executed. The commands contained in CPL programs are not normally displayed during
execution. Thus, when you run COMPILE.CPL, this is what you see at your terminal:

OK, r compile
24 Dec 86 11:41:52 Wednesday

[F77 Rev. 20.2 Copyright (c) 1986, Prime Computer, Inc.]
0000 ERRORS [<.MAIN.> F77 Rev. 20.2]

[F77 Rev. 20.2 Copyright (c) 1986, Prime Computer, Inc.]
0000 ERRORS [<.MAIN.> F77 Rev. 20.2]

[F77 Rev. 20.2 Copyright (c) 1986, Prime Computer, Inc.]
0000 ERRORS [<.MAIN.> F77 Rev. 20.2]

The same information is stored in the COMOUTPUT file created by this CPL program.
If you want the commands to be displayed, you can preface the CPL file with the &DEBUG
&ECHO COM directive. This directive tells the CPL interpreter to display all commands at the
terminal and record them in the COMOUTPUT file.

Note
The &DEBUG directive, which controls all CPL debugging facilities,
is discussed in full in Chapter 10.

With the &DEBUG &ECHO directive included, the COMPILE.CPL file looks like this:

&DEBUG &ECHO COM
COMO COMPILE.COMO
DATE
F77 THISFILE -XREF
F77 THATFILE -XREF -321
F77 TOTHERFILE -DEBUG
COMO -E

2-23

CPL User's Guide

When this version of COMPILE.CPL is run, the terminal session looks like this:

OK, r compile
COMO COMPILE.COMO
DATE
24 Dec 86 11:45:44 Wednesday
F77 THISFILE -XREF

[F77 Rev. 20.2 Copyright (c) 1986, Prime Computer, Inc.]
0000 ERRORS [<.MAIN.> F77 Rev. 20.2]
F77 THATFILE -XREF -321

[F77 Rev. 20.2 Copyright (c) 1986, Prime Computer, Inc.]
0000 ERRORS [<.MAIN.> F77 Rev. 20.2]
F77 TOTHERFILE -DEBUG

[F77 Rev. 20.2 Copyright (c) 1986, Prime Computer, Inc.]
0000 ERRORS [<.MAIN.> F77 Rev. 20.2]
COMO -E

The same information is also recorded in the COMOUTPUT file.

2-24

CPL Format

This chapter describes the formatting rules for CPL programs and the use of character strings in
CPL.

CPL Format Rules
The format of CPL programs is simple; nine rules presented in this chapter cover all general
cases. (Any specific rules that apply to a single advanced feature are presented within the
discussion of that feature.) As these rules demonstrate, the format of CPL is similar to that of
most high-level programming languages. Moreover, CPL supports PRIMOS command syntax.
This means that

• The PRIMOS commands that you write in a CPL program are identical to the PRIMOS
commands that you issue interactively at your terminal.

• CPL, like PRIMOS, uses the semicolon (;) as a command delimiter. This allows you to
write two or more PRIMOS commands (separated by semicolons) on a single line of
your CPL program.

• CPL supports other PRIMOS special characters, including the syntax suppressor (~)
and the use of parentheses for iteration. However, use of these special characters is
discouraged because CPL syntax uses the same characters for other purposes. Refer to
Chapter 11 for further details on the use of PRIMOS special characters.

Further information on the format rules for PRIMOS commands and special characters is found
in the PRIMOS Commands Reference Guide.

▶ RULE 1: Each statement in a CPL file must appear on a separate line.
A statement is either a PRIMOS command, a sequence of PRIMOS commands separated by
semicolons, or a CPL directive plus its arguments. An argument in turn may be either a PRIMOS
command or another CPL directive, with its argument(s). (See RULE 3 for handling of very long
statements.) For example, the following statement shows a single command on a line by itself.

A MYDIR

3-1

CPL User's Guide

The following statement shows two commands separated by a semicolon.

CR SUBDIR1; A *>SUBDIRl

The following statement shows a CPL directive and its arguments.

&IF %VAR% = 1 &THEN RESUME FIRSTPROG

The &THEN directive is the argument for the &IF directive. The command RESUME
FIRSTPROG is the argument for the &THEN directive. Thus, this line represents one directive
plus arguments.
The &ELSE directive is not an argument for the &IF directive. Therefore, it, with its arguments,
goes on a new line.

&IF %VAR% = 1 &THEN &GOTO LABEL1
&ELSE &IF %VAR% = 3 &THEN &GOTO LABEL3

The directives &DO and &END must appear on lines by themselves. Each statement in the &DO
group has a line to itself.

&DO
RESUME FIRSTPROG
RESUME SECONDPROG

SEND

▶ RULE 2: A statement may start anywhere on the line.
Indent CPL programs for ease of reading, as you would indent any structured program. In almost
all cases, indentation has no effect on CPL directives or PRIMOS commands.
There are two exceptions to this rule. The first concerns statements within &DATA groups. CPL
does not ignore blanks used for indenting statements within a &DATA group. Instead, CPL
passes these leading blanks to the subsystem as part of the subsystem statement. Most subsystems
(BIND, for example) ignore leading blanks before command statements.
The second exception concerns quoted strings. Within a quoted string, all blanks are retained as
part of the string. This includes blanks used for indentation when a quoted string is continued
onto additional lines. Line continuation is described in the next rule.

▶ RULE 3: To continue a statement over two or more lines, place a tilde (~) at the end
of each incomplete line.

By using tildes to continue lines, you can create statements longer than a single line and can
format statements with whatever indentations you like. For example,

3-2

CPL Format

&IF %VAR% = 1 ~
&THEN RESUME FIRSTPROG
&ELSE ~

&IF %VAR% = 2 ~
&THEN RESUME SECONDPROG
&ELSE RESUME LASTPROG

If there is a blank between the tilde and the word that precedes it, or if the beginning of the next
line is indented by one or more spaces, the contents of the two lines are separated by one space.
For example,

BREAK ~
HERE

is read as

BREAK HERE

If no space precedes the tilde and the next line starts in column 1, the two lines are concatenated
with no space between them. For example,

NO BREAK-
HERE

is the same as

NO BREAKHERE

The CPL interpreter evaluates multiple blanks as a single blank. The CPL interpreter does not
evaluate multiple blanks that are within a quoted string.
A single line of a CPL program may have a maximum of 161 characters (counting multiple
blanks). By using tildes, you can continue a statement on additional lines. A multiline CPL
statement may have a maximum of 1024 characters (including the tildes, but counting each string
of blanks as a single character).

Note
The line that you type in your CPL program cannot exceed these
character counts. The value that CPL returns when it evaluates the line
also cannot exceed these character counts. For example, the CPL
program line TYPE %ENCYCLOPEDIA% is an invalid line if the
current value of %ENCYCLOPEDIA% exceeds the allowed character
counts.

The maximum length for a CPL command line is 161 characters. You cannot use tildes to extend
the command line that invokes a CPL program.

3-3

CPL User's Guide

▶ RULE 4: Comments may be included in CPL programs by preceding each comment
with a slash and asterisk (/*).

A comment can appear on its own line, or on the same line as a CPL statement. Comments end at
the end of the physical line on which they appear. They are not continued onto the next line, even
when a tilde is used to mark an incomplete statement. A tilde to continue a program line should
appear at the end of the line, following any intervening comment.
Thus, the statement

&IF %VAR% = 1 /*Comment~
& T H E N / * m o r e c o m m e n t ~
RESUME MYPROG /*more comment

is read as &IF %VAR% = 1 &THEN RESUME MYPROG. The comments are ignored (that is,
not evaluated or passed to the command processor).
For example,

RESUME FIRSTPROG /*FIRSTPROG does such-and-so

&IF %VAR% = 1 &THEN RESUME FIRSTPROG /*Test for case 1

▶ RULE 5: CPL programs can be written in uppercase or lowercase letters.
PRIMOS commands, CPL directives, function names, and variable names can be written in
uppercase letters, lowercase letters, or a mixture of uppercase and lowercase. CPL considers
variable names that are spelled the same to be identical, regardless of the case of the letters in the
names.
However, variable values are case-sensitive. That is, CPL considers two variable values to be
different if they are written in different cases. Variable values supplied from the command line to
the &ARGS directive are, by default, automatically converted to uppercase letters. Chapter 5
describes how to override this default.

Logical values, such as TRUE and FALSE, are case-insensitive. That is, CPL considers two
logical values to be identical even if they are written in different cases. Logical values generated
by CPL are always in uppercase letters.

▶ RULE 6: Filenames for CPL programs follow PRIMOS file-naming conventions and
end with .CPL.

Filenames must not exceed 32 characters. Allowable characters are A-Z, 0-9,/_ # $ - . * &. The
first character cannot be a number or a hyphen (-). The CPL interpreter translates lowercase letters
to uppercase. The .CPL suffix is included in the 32-character limit, even though you do not need
to specify the suffix when you invoke the file.

3-4

CPL Format

▶ RULE 7: Variable names must also follow standard rules.
Variable names must not exceed 32 characters in length. They can contain only the characters A-
Z (uppercase and lowercase), 0-9, underscore (_), and dot (.). (The CPL interpreter translates
lowercase letters to uppercase.) Names of local variables (such as those defined by the &ARGS
directive) must begin with a letter. Names of global variables (explained in Chapter 4) must begin
with a doL

▶ RULE 8: Operators in a CPL expression must be preceded and followed by one or
more spaces.

CPL uses the arithmetic operators +, -, *, /, unary +, and unary -; the logical operators & (and),
I (or), and A (not); and the relational operators =, A=, <, >, <=, and >=. Parentheses must also be
preceded and followed by blanks. For example,

(3 + 5) * 4
&IF %THIS% > %THAT%

This spacing rule prevents confusion between operations and text strings. For example, B > A is a
logical statement that means "B is greater than A". B>A is a pathname. The required spaces in the
logical expression keep the distinction clear, both for users and for the CPL interpreter.

▶ RULE 9. Any special character, or string containing blanks or special characters,
must be placed inside single quotation marks when used as the value of a variable.

The special characters are as follows:
• Single quotation marks (') When used as a value, a single quotation mark must be

doubled and the string that contains it must be enclosed in single quotation marks. The
first example shows a string containing a single quotation mark. The second example
shows a single quotation mark by itself as a value.

I"m a quoted string'i j i i

• Commas (,)

'I"m quoted, too'

• Square brackets ([])

'Don"t evaluate this [function call]

Semicolons (;)

'This; isn"t; a; list; of; arguments

•

3-5

CPL User's Guide

• Percent signs (%)

'Don"t use the value for this %variable%'

• Hyphens (-) at the beginning of strings.

' - 6 4 V

• Parentheses (()) at the beginning of strings, or within a string if not paired.

'(this string is in parentheses)'
'this is a left parenthesis ('

• Ampersands (&) at the beginning of strings.

'£Not a CPL directive'

• Tildes (-) at the end of strings.

'Do not continue to the next line~'

• Comment characters (/*)

'This is a slash and asterisk /* not a comment indicator'

• CPL operators (+-*/=<>) when you specify an individual operator that is not part of
a string.

• CPL expressions if you don't want them evaluated. An expression must always be
quoted when supplied as a command line argument.

'2 + 3'
'%A% > %B%'

The CPL interpreter normally evaluates variable references, function calls, and expressions. This
evaluation replaces each variable reference with its current value, executes each function and
replaces it with its return value, and calculates expressions and replaces each arithmetic
expression with an integer value and each logical expression with TRUE or FALSE. Variable
references, function calls, and expressions inside quoted strings are not evaluated. Thus, 2 + 3 is
an expression but '2 + 3' (quoted) is merely a string. Hence,

2 + 3 = 5

is TRUE, because 2 plus 3 equals 5; but

' 2 + 3 ' = 5

is FALSE, because the string '2 + 3' and the string 5 are not identical.
3-6

CPL Format

Note
If you do not set off operator characters with blanks, CPL does not
read the string as an expression. Thus, CPL reads the string A > B as
an expression. You must enclose this string in single quotation marks
if it is to remain the character string A > B, rather than an evaluated
expression. The string A>B is not an expression, and therefore does
not need to be quoted.

Using Quoted Strings
In CPL, any material enclosed within single quotation marks is considered a character string. The
actual length of the character string is the number of characters and blanks within the string; the
enclosing single quotation marks are not counted, and multiple blanks are not ignored. Doubled
quotation marks that are embedded in a quoted string (for example, 'DON'T') are counted as a
single character.
A character string can be as long as a CPL statement (1024 characters). To extend a string beyond
a single line, place a tilde at the end of the line. Even though the tilde is within the quoted string,
it is evaluated as a line-continuation character because it is the last character on that line. This
point is demonstrated in the following two examples:

'In this string the tilde is not evaluated ~'

'In this string the tilde ~
is evaluated as a line-continuation character'

Concatenating Quoted Strings
Two strings are concatenated if they are placed next to each other without an intervening blank
space. Concatenating two quoted strings produces a single quoted string. For example, if

%A% = 'I"maquo'

and

%B% = 'ted string'

then

%A%%B% = 'I"ma quoted string'

You can concatenate quoted strings returned by variable references and function calls as well as
literal quoted strings.

3-7

CPL User's Guide

Evaluation of Quoted Strings
Whenever you use a quoted string in CPL, that string remains quoted wherever it is used. This
means that a quoted string is always viewed as a single, indivisible item. For example, a quoted
string containing three words separated by blanks cannot be substituted for three variables. The
string is a single value, and can only be substituted for a single variable.
CPL preserves multiple blanks within a quoted string. For example, the string 'A B C
retains the multiple blanks between A and B. This means that in the following example

'This statement continues ~
on the next line.'

the blanks used to indent the line continuation are considered part of the quoted string.

Single quotation marks prevent the evaluation of special characters. Not only are quoted special
characters not evaluated by the CPL interpreter, they are also not evaluated by other software
invoked from the CPL program. For example, consider a CPL program SHUT.CPL that closes
open files:

&ARGS pathname
CLOSE %pathname%

If you specify the pathname of an open file on the command line as follows,

CPL SHUT MYDIR>OPENFILE.Fll

SHUT.CPL closes the specified file.

If you specify the quoted pathname of an open file on the command line,

CPL SHUT 'MYDIR>OPENFILE.Fll'

SHUT.CPL still closes the specified file. The quotation marks simply indicate to the CLOSE
command that the pathname is, indeed, a string.

However, if you attempt to close all open files by specifying the -ALL option,

CPL SHUT '-ALL'

the CLOSE operation fails. This is because the CLOSE command cannot evaluate the hyphen as a
special character indicating an option. It reads '-ALL' as a pathname string, and fails to find a file
of that name. This problem can be resolved by unquoting the character string.

3-8

CPL Format

r

The QUOTE and UNQUOTE Functions
CPL provides built-in QUOTE and UNQUOTE functions to place quotation marks around strings
and to remove quotation marks from strings. The UNQUOTE function is particularly useful, as it
allows you to use a quoted string as an argument for a CPL program, then remove the quotation
marks from the string inside the program. For example, to pass PRIMOS command options
(which begin with hyphens) as arguments, you can write a CPL file (MYPROG.CPL) like this:

&ARGS filename; options
F77 %filename% -64V -L %filename%.LIST [UNQUOTE %options%]

With this program, the command line

R MYPROG.CPL FOO '-XREF -EXPLIST'

produces the CPL statement

F77 FOO -64V -L FOO.LIST -XREF -EXPLIST

The UNQUOTE function removes the single quotation marks from the string '-XREF
-EXPLIST'. The CPL interpreter replaces the UNQUOTE function call with the unquoted string,
and passes the finished command to the command processor.
MYPROG.CPL can also be invoked by the command line

R MYPROG.CPL FOO

This invocation produces the CPL statement

F77 FOO -64V -L FOO.LIST

Because this invocation supplies no value to the options argument, the reference to [UNQUOTE
%options%] first becomes [UNQUOTE "], and then becomes the unquoted null string (that is, a
string of length 0, containing no characters), which is ignored by PRIMOS.
For more information on quoted strings, see Chapter 12. For a better way to pass command
options as arguments, see Chapter 6.

3-9

Part II
The Intermediate Subset

Variables

This chapter discusses
• How to define variables with the &SETJVAR directive
• The three types of values — string, integer, and logical — that variables can possess,

and the operations that can be performed on these three types of values
• Local and global variables
• The four PRIMOS commands that govern global variables

The &SET_VAR Directive
You use the &SET_VAR directive to create a CPL variable and assign it a value within your
program. A &SETJVAR directive can define a new variable or change the value of an existing
variable, such as a variable established by the &ARGS directive. Like the &ARGS directive, you
can place a &SETJVAR directive anywhere in your CPL program prior to the first statement that
uses its assigned value. By convention, &ARGS and &SET_VAR directives for all variables are
placed at the beginning of each CPL program module. You can place additional &SETJVAR
statements in the CPL program wherever it is necessary to change the assigned value of a
variable.
The &SETJVAR directive has the following format:

&SETJVAR name-1 {,name-2...,name-n> := value

You can abbreviate the name of the &SETJVAR directive to &S.
name-1 through name-n permit you to define multiple variables. Each of these can be either

• A valid variable name (naming conventions are described in Chapter 3, Rule 7).
• An expression that evaluates to a valid variable name. An expression can contain

function calls and references to other variables.

In the following example, the first &SET_VAR creates a variable named MONTH with a value of
JANUARY. The second &SETJVAR directive uses this variable to create two variables named
JANUARY1 and JANUARY 15 and assigns the value MONDAY to those variables:

& SETJVAR MONTH := JANUARY
&SETJVAR %M0NTH%1, %MONTH%15 := MONDAY

4-1

CPL User's Guide

This method of creating variable names allows you to simulate array variables. Refer to Chapter
11 for details.
value can be

• A character string
• An integer
• A logical value (some form of TRUE or FALSE)
• An expression that evaluates to any of the above

The following sections describe the use of the three types of variable values: string, integer, and
logical.

String Values for Variables
AU CPL variable values are character strings. CPL can also process some of these values as
integers or logical values, as described later in this chapter. Any value that is not a valid integer or
logical value can only be processed as a character string. Any value enclosed in single quotation
marks can only be processed as a character string.
A character string can contain characters of any type. Unlike the &ARGS directive (which
converts all letters to uppercase), &SET_VAR permits you to set character strings that contain
both uppercase and lowercase letters.
The following example shows one use of variables with string values. Note that this example uses
&S, which is a shorter name for the &SETJVAR directive:

&ARGS DISTRICT
&IF %DISTRICT% = E ~

&THEN &S DISTRICT := ACCTS>RECEIVED>EAST
&ELSE &IF %DISTRICT% = W ~

&THEN &S DISTRICT := ACCTS>RECEIVED>WEST
&ELSE &S DISTRICT := ACCTS>RECEIVED>CENTRAL

In this example, the &SET_VAR directive allows lengthy arguments to be entered in abbreviated
form (as E or W), then expands those arguments to their full values.
Additional information on using character strings can be found in Chapter 3.

Integer Values for Variables
All CPL variable values are character strings. However, some character strings (such as 3, 0, 259,
-6847) can be interpreted as integer values. CPL allows the following arithmetic operations on
these integers: addition (+), subtraction (-), multiplication (*), and division (/).

4-2

Variables

Integer values are positive whole numbers, negative whole numbers, and zero. They do not
include real numbers (numbers containing a decimal point) or numbers expressed in exponential
notation. Valid integers can range in value from -231 + 1 to 231 -1. Do not enclose variable values
to be interpreted as integers in single quotation marks or include commas in them. In some cases,
negative integers must be initially supplied as quoted strings, then unquoted (using the
UNQUOTE function call) when they are used as integers.
The following examples are all valid statements:

& SETJVAR A
& SETJVAR B
& SETJVAR C
& SETJVAR D
&SETJVAR E
&SET VAR F

%B% + 1
%C% - %B%
(%A% + 2) * %C%
%E% / %B%

(A = 4)
(B = 5)
(C = 6)

(D = l)
<E = 36)
(F = 7, remainder discarded)

Note
Remember to leave at least one blank space before and after arithmetic
and logical operators — including parentheses, and before the minus
signs in negative numbers.

Since integers, in CPL, are actually character strings that evaluate to integer values, integers can
be concatenated exactly like character strings. For example,

£ SETJVAR A = 5 (A = 5)
& SETJVAR B = 6 (B = 6)
&SET_VAR C = %A%%B% (C = 56)
& SETJVAR D = %A% + %C% (D = 61)

Logical Values for Variables
CPL variables can also take the logical values, TRUE and FALSE. Users may use the strings
TRUE, true, T, and t to represent logical (or Boolean) true, and FALSE, false, F, or f for Boolean
false. CPL itself uses the spellings TRUE and FALSE. You can set a logical value yourself:

&S A := TRUE

Or, you can have CPL do calculations that produce logical results. For example,

& SETJVAR A
&SET_VAR B
&SET VAR C

= 6
= 12
= %A% > %B%

When these three directives have been executed, C has the value FALSE.
4-3

CPL User's Guide

Notes
If you enclose a logical value in single quotation marks (for example,
'TRUE'), CPL cannot evaluate the string as a logical value. It instead
treats the string as an ordinary character string.
The logical operators >, >=, =, A=, <=, and < perform string comparisons
if either operand is a character string. Strings are compared based on the
standard sorting sequence (that is, 1 < A < B < a < b). If both operands are
integers or Boolean values, an arithmetic comparison is done. (Boolean
TRUE = 1, and Boolean FALSE = 0.) Thus, the following expressions
are all true:

128 > 40 because 128 > 40
'40' > '128' because '4' > T
BARREL > APPLE because 'B' > 'A'
TRUE > FALSE because 1 > 0
34 > FALSE because 34 > 0
'FALSE' > 34 because 'F' > '3'

Local and Global Variables
CPL supports two kinds of variables: local variables and global variables. Local variables and
global variables can have the same types of values: string, integer, and logical. All variable values
follow the same rules. What distinguishes local variables from global variables is the persistence
and scope of the variable, not the nature of its value.

Local Variables
All variables shown so far have been local variables. Local variables have the following
attributes:

• They are defined inside a running CPL program.
• They are defined by either

o The &ARGS directive (explained in Chapter 2).
o The &SETJVAR directive (explained earlier in this chapter).
o The SETJVAR command (explained later in this chapter).

• They are known only to the program that creates them.
• They disappear when the program that creates them returns or terminates.

Precisely because they are local — that is, defined within one activation of one program — local
variables from one program never interfere with those of any other program.

4-4

Variables

r

Global Variables
Sometimes you want to define variables that can be known to, and possibly modified by, a group
of programs, rather than a single program. At these times, you can use global variables. Each user
creates and activates a unique, personal set of global variables. Global variables have the
following attributes:

• They are stored in one or more files in your directory, independent of any CPL
program file.

• They can be used by many different CPL programs.
• They can be used by PRIMOS commands and programs written in high-level

languages.
• They survive program termination and logouts. Once defined, global variables persist

until you delete them.

To use global variables, you must create a global variable file, place global variables in that file,
and activate access to that file from your CPL program. The PRIMOS commands governing
global variables are shown in Table 4-1. They are explained in greater detail later in this chapter.

Table 4-1
Variable-handling Commands

Command Function
DEFINE_GVAR Creates or activates a global variable file.
SETJVAR Defines a new variable or changes the value of an existing vari

able. If the variable is a global variable, SETJVAR places it in
the active global variable file.

LIST.VAR Lists the variables contained in an active global variable file.
DELETE, VAR Deletes variables from an active global variable file.

Global variables are particularly useful for establishing variable values for use by programs of
different types, as they may be set and referenced

• At command level
• By any of your CPL programs
• By high-level language programs

Note
Global variables are not designed for interprocess communication. Do
not try to use global variables to pass messages between concurrently
executing programs. Attempts to use global variables for this purpose
are not guaranteed to work.

4-5

CPL User's Guide

Global variables must have names that begin with dots (.). For example,

.SIZE

.MYDIR

At command level, global variables are defined by the SETJVAR command. Within a CPL
program, they are defined by the &SETJVAR directive or the SETJVAR command. (They
cannot be defined by the &ARGS directive.) High-level programs can define global variables
using the GV$SET subroutine and can reference global variables using the GV$GET subroutine.
These subroutines are described in the Subroutines Reference Guide, Volume II.

PRIMOS Commands
PRIMOS provides four commands for handling global variables: DEFINEGVAR, SETJVAR,
LISTJVAR, and DELETEJVAR. Like most PRIMOS commands, these can be executed from
within a CPL program or interactively from the terminal. Within a CPL program, the SETJVAR
command can be used for both global variables and local variables.

The DEFINE_GVAR Command
Each user's global variables reside in a file that is created and activated by the DEFINE_GVAR
command (abbreviation: DEFGV). The command

DEFINE_GVAR pathname -CREATE

creates and activates a new global variable file. If the file named by pathname already exists, the
command simply activates it. The command

DEFINE_GVAR pathname

activates an existing global variable file. The DEFINE_GVAR command may be used at
command level or inside a CPL program. You must create a global variable file before you can
define global variables. You must activate your global variable file before using the variables it
contains, or adding or deleting global variables.
For example, to create an empty global variable file named MYJVARS, give the command

DEF INE_ GVAR MY_VARS -CREATE

To use the file again in a later session, use the command

DEFINE GVAR MY VARS

4-6

Variables

Note
If you supply a filename to DEFINE_GVAR, it creates or activates a
file in your current directory. To create or activate a global variable
file elsewhere, supply the full pathname. DEFTNE_GVAR cannot
locate files using the PRIMOS search rules facility. If the directory
containing the global variable is protected by a password, you must
provide the full pathname of the file within the DEFINE_GVAR
command. For example,

DEFINE_GVAR '<DISK>MY_DIR SECRET>MY_VARS'

where SECRET is the password for directory MY_DIR. Password
protected directories are described in the Prime User's Guide.

Once activated, a global variable file remains active until one of the following occurs:
• You log out or ICE your process.
• You explicitly deactivate the file.
• You activate another global variable file.

You can create more than one global variable file, but you can have only one global variable file
active at any time. Therefore, when you issue a DEFINE_GVAR command, it activates the
named file and deactivates any global variable file already active.
You can also deactivate a global variable file by issuing the command

DEFINE.GVAR -OFF

No pathname is required for this form of the command.
Whenever a global variable file is active, you may add to, delete, list, and make use of any
variables it contains. If your CPL program refers to a global variable when no global variable file
is active, the program aborts with an error message. It is best to explicitly activate the global
variable file in your CPL program, rather than assume that the user running the CPL program has
that global variable file active.
You can delete a global variable file from your directory using the standard DELETE command.
Make sure the file is inactive (by issuing the command DEFINE_GVAR -OFF) before you delete
it. (If you fail to do this, you create a confusing situation in which you can list variables from
your deleted file, but cannot add or modify any variables.)

The SET_VAR Command
SETJVAR is a PRIMOS command that you can use to set variables. It both creates a variable and
assigns a value to the variable. You can use SETJVAR within a CPL program to set both local
variables and global variables. The SET_VAR command has the format

SETJVAR name {:=} value

4-7

CPL User's Guide

name is any legal variable name with a maximum of 32 characters. Naming conventions for
variables are described in Chapter 3, Rule 7. Names of global variables must begin with a dot (.).
name can define a new variable or refer to an existing variable.

value can be any of the following:

• A character string with a maximum of 1024 characters. Lowercase characters are not
converted to uppercase. If the string contains special characters (as explained in
Chapter 3), it must be enclosed in single quotation marks.

• An integer between the values of -231 + 1 to 231 - 1. Positive numbers, negative
numbers, and zero are permitted. Real numbers (containing a decimal point) and
numbers expressed in scientific notation are not permitted.

• A logical (Boolean) value. Logical values include the character strings TRUE and
FALSE. The forms TRUE, T, true, t, FALSE, F, false, and f are acceptable.

The assignment symbol (:=) is optional. If specified, it must be set off with blank spaces. For
example,

SETJVAR .A ALPHA

and

SETJVAR .A := ALPHA

both define the global variable .A and assign it the value ALPHA.

You can use the SETJVAR command interactively, at command level, to define global variables.
Or, you can use it inside a CPL program to define either global or local variables. However, since
the &SETJVAR directive is faster than the SETJVAR command, use the SET_VAR command at
command level only, and use the &SET_VAR directive inside CPL programs.

The following example demonstrates the use of both the SET_VAR command and the &SET_VAR
directive. You start by setting a global variable, then invoke the DAILY.CPL program from your
terminal:

DEFINE!GVAR WEEKLY
SET_VAR .DAY := FRIDAY
RESUME DAILY.CPL

These commands run the following CPL program:

/* Program DAILY.CPL, which is run 5 days a week
/* and invokes a weekly totals program on Fridays.

DEFINE_GVAR WEEKLY
&IF [NULL %.DAY%] &THEN ~

&DO
TYPE 'Specify a day and rerun'
&RETURN
SEND

4-8

Variables

&ELSE RESUME DAILYCALC. RUN
&IF %.DAY% = FRIDAY &THEN ~

RESUME TOTALS.CPL
&ELSE TYPE 'Today is not a Friday'
& RE TURN

/* Program TOTALS.CPL, which performs weekly totals
/* on Fridays, then resets .DAY for the next daily run

&IF %.DAY% = FRIDAY &THEN ~
&D0

RESUME WEEKLY CALC.RUN
& SETJVAR .DAY := MONDAY

SEND
&RETURN

The DELETE.VAR Command
The DELETEVAR command removes one or more global variables from an active global
variable file. Its format is

DELETE_VAR name-1 {...name-n}

name-1 through name-n are names of global variables. They can also be wildcards, variable
references, or function calls that evaluate to the names of global variables. Names of global
variables in the DELETE_VAR command are separated by blanks. All global variables listed in
DELETEJVAR are deleted from the file. For example,

DEFINE.GVAR MY_VARS
DELETE,VAR .ABC

deletes the variable .ABC from the file MYJVARS. The command

DELETE,VAR .A .B .C

deletes three variables, .A, .B, and .C.

DELETE,VAR .AB@@

deletes all global variables in the file whose names begin with .AB.
If you specify the name of a variable to DELETEVAR and that variable does not exist,
DELETEJVAR skips over that variable name and deletes whichever listed variables do exist in
your global variable file.

4-9

CPL User's Guide

The LIST.VAR Command
The command LISTJVAR lists the global variables in your currently active global variable file.
You can list all or some of the global variables contained in your active global variable file, with
their values. The format of LIST.VAR is

LIST.VAR {name-1... name-n}

name-1 through name-n are the names of the global variables that you wish to list, name-1
through name-n may be either global variable names or wildcard names. If no names are given,
the LIST.VAR command lists all the variables in the file.
The following terminal session uses LIST.VAR to list all global variables in the active global
variable file:

OK, list_var
. E R R . M E S S A G E S o r r y , t r y a g a i n !
. M Y D I R g l e n n
. D I G I T S 0 1 2 3 4 5 6 7 8 9
. A L A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
.ERR.REPORT
OK,

In this example, the value of .ERR.REPORT is the null string.
If names are given, LIST.VAR lists only those names (or groups of names) and their values, as
shown in the following terminal session:

OK, list_var .err@
. E R R . M E S S A G E S o r r y , t r y a g a i n !
.ERR.REPORT
OK, list_var .al
. A L A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
OK,

4-10

Terminal Input and Output

This chapter describes directives and functions that a running CPL program can use to receive
input from the user terminal. It describes how non-interactive CPL programs can use these same
facilities to receive input from a COMINPUT file. Finally, this chapter describes two methods to
output information from a CPL program to the user terminal or COMOUTPUT file.

Input Overview
CPL provides three facilities for runtime input:

• The &TTY directive (or the &TTY_CONTINUE directive) receives data of any type
and supplies it to a &DATA group subsystem. These directives can only be used
within a &DATA group. They allow the user to enter one or more lines of information
to a utility or a user program run within a &DATA group. This information can be
supplied interactively or from a COMINPUT file.

• The QUERY function displays a question at the user's terminal and accepts a YES or
NO answer. The QUERY function is a logical (Boolean) function; it interprets "YES"
answers as TRUE and "NO" answers as FALSE. If other types of answers are given, it
issues a prompt requesting a YES or NO answer.
The RESPONSE function displays a request for information at the user's terminal and
accepts a character string answer. If this string contains blanks or special characters,
the CPL interpreter encloses the string in single quotation marks. The CPL interpreter
then returns this string as the value of the function; that is, the string replaces the
function call.

Output Overview
CPL provides two facilities for output to the terminal or to a COMOUTPUT file:

• The TYPE command displays any message. This PRIMOS command can be placed
almost anywhere within a CPL file.

5-1

CPL User's Guide

The &MESSAGE clause of the &RETURN directive sends a message when the CPL
program returns. &MESSAGE can be used to announce the completion of a CPL
program or subprogram. Another common use of &MESSAGE is to announce a fatal
error in a program, such as the failure of an &IF test. The &MESSAGE clause may
also be used with the error-handling &STOP directive. See Chapter 15, Error and
Condition Handling, for details on &STOP.

Terminal Input

The &TTYand &TTY_CONTINUE Directives
The format of the &TTY directive is

&DATA {subsystem}

&TTY
&END

The &TTY directive enables you to input multiple lines of information from a user terminal to a
subsystem invoked by a &DATA group. &TTY can only be issued from within a &DATA group;
it is always the last statement executed in a &DATA group, immediately prior to the &END
directive. The &TTY directive gives control of the subsystem to the terminal until the terminal
user issues the QUIT command appropriate for that subsystem. Because the &TTY directive gives
control to the user terminal, a CPL program containing an &TTY directive must be run
interactively. Further details and examples of the use of the &TTY directive are provided in
Chapter 2.
The &TTY.CONTINUE directive is similar to the &TTY directive, except that &TTY.CONTINUE
permits you to input information from either a COMINPUT file or a user terminal. A CPL program
containing &TTY.CONTINUE directives can be run non-interactively. &TTY.CONTINUE is
further described in the section entitled Command Input Stream Error Handling, later in this chapter.

The QUERY Function
The format of the QUERY function is

[QUERY {prompt} {default} {-TTY}]

For example,

[QUERY 'Et tu, Brute' TRUE -TTY]

5-2

Terminal Input and Output

When the QUERY function is executed, it displays the value of prompt on the user's terminal,
follows it with a question mark, and then waits for the user to type an answer. The user responds
to the prompt with a YES or NO answer. The QUERY function returns either logical TRUE or
FALSE, depending on the user's response.

prompt: The prompt text is displayed on the user's terminal. Because prompt is usually a
question, CPL automatically adds a question mark to the end of the prompt, prompt may be any
character string with a maximum of 1024 characters. If prompt contains blanks or special
characters, it must be placed inside single quotation marks.
If prompt is omitted or is the null string ("), no prompt is displayed. You may wish to omit the
prompt if your CPL program requests instructions by some other means, such as the TYPE
command or output from a user program.
Remember, variables and function calls cannot be evaluated within a quoted string. Therefore, if
you write [QUERY 'SPOOL %FILE%'], the user sees the prompt

SPOOL %FILE%?

at the terminal. If you write [QUERY 'SPOOL ,%FILE%], the user sees the actual filename in the
prompt.
You respond to a QUERY prompt by typing a YES or a NO response, followed by a carriage
return. The QUERY function evaluates your response to produce a logical TRUE or FALSE
value. QUERY accepts YES, yes, Y, y, OK, and ok as TRUE answers. It accepts NO, no, N, n,
QUIT, and quit as FALSE answers.

default: The QUERY function returns its default value if the terminal user does not supply a
value when prompted. Establishing a default value is optional. If you establish a default value, it
must follow the prompt value; you can use the null string (") to establish an omitted prompt.
Permitted values for default are TRUE, T, FALSE, or F (uppercase or lowercase).
If you have specified a default value, then a null response from the user terminal (that is, a
carriage return or empty line) is taken as the function's default response. If you do not specify a
default value, a carriage return is interpreted as FALSE.

-TTY: The -TTY option forces the QUERY function to take input from the terminal. If this
option is present, the CPL program containing the query cannot be executed as a phantom or
batch job.
If the -TTY option is not used, the QUERY function returns one step up the command input
stream to get its input. This can be the terminal, a &DATA block inside another CPL program, or
a command input file. Receiving input from sources other than the user terminal is further
discussed in the section entitled COMINPUT File Input, later in this chapter.

5-3

CPL User's Guide

Examples: Here are some examples of the QUERY function in use.

&DATA ED %NAME%
T

(Editor Commands)

FILE
SEND
&IF [QUERY 'Spool file']-

&THEN SPOOL %NAME% -AT DOC -FORM WHITE

A YES answer to the query spools the file. A NO, or a carriage return, does not spool it. Any
other answer produces the message,

Please answer "YES", "OK", "NO", or "QUIT":

For example, if the above program is named TEST.CPL, the following terminal session might
occur:

OK, R TEST.CPL BOOK
SPOOL FILE? SURE
Please answer "YES", "OK", "NO", or "QUIT": Y
[SPOOL Rev. 21.0 Copyright (c) 1987, Prime Computer, Inc.]
Request 14 added to queue, 2 records : <MAINl>GLENN>BOOK
OK,

The following example demonstrates the QUERY function's default option:

&DATA ED %NAME%
T

(Editor Commands)

FILE
&END
&IF [QUERY 'Spool file' TRUE] ~

&THEN SPOOL %NAME% -AT DOC -FORM WHITE

Again, the user chooses whether or not to spool the file. This time, however, default has been
given as TRUE. Therefore, a carriage return as answer spools the file, as shown below:

OK, R TEST.CPL BOOK
SPOOL FILE?
[SPOOL Rev. 21.0 Copyright (c) 1987, Prime Computer, Inc.]
Request 14 added to queue, 2 records : <MAINl>GLENN>BOOK
OK,

5-4

Terminal Input and Output

r

The RESPONSE Function
The format of the RESPONSE function is

[RESPONSE {prompt} {default} {-TTY}]

For example,

[RESPONSE 'The flavor I want is' VANILLA -TTY]

When the RESPONSE function is executed, it displays the value of prompt on the user's terminal,
follows it with a colon, and then waits for the user to type an answer. The user can respond to the
prompt with any character string. The RESPONSE function returns this text string, in quotation
marks if necessary.

prompt: The prompt text is displayed on the user's terminal. CPL automatically adds a colon to
the end of the prompt, prompt may be any character string with a maximum of 1024 characters. If
prompt contains blanks or special characters, enclose it in single quotation marks.
If prompt is omitted, or is the null string, no prompt is displayed. You may wish to omit the
prompt if your CPL program requests a response by some other means, such as the TYPE
command or output from a user program.

default: The RESPONSE function returns the default value if the terminal user does not supply
a value. Specifying a default value is optional. The default value can be any character string with
a maximum of 1024 characters. If default contains blanks or special characters, enclose it in
single quotation marks.
If you have specified a default value, a null response from the user terminal (that is, a carriage
return or empty line) is taken as the function's default response. If you did not specify a default
value, a carriage return is interpreted as a null string. A null string is an acceptable value.

-TTY: The -TTY option forces the RESPONSE function to take input from the terminal. If this
option is present, the CPL program containing this RESPONSE function cannot be executed as a
phantom or batch job.

Example: The following example demonstrates the RESPONSE function.

&ARGS DIR
&IF [NULL %DIR%]~

&THEN &SET.VAR DIR := [RESPONSE 'Which directory?']
ATTACH %DIR%

This example checks to make sure that you input an argument value when you run the CPL
program. It tests for a null argument value. If the argument is null, it invokes the RESPONSE
function. RESPONSE asks the user explicitly for the argument value. When the user supplies the
value, the program sets the variable with that value.

5-5

CPL User's Guide

COMINPUT File Input
As stated earlier, the &TTY directive, and the QUERY and RESPONSE functions with the -TTY
option, all insist on input from the terminal. CPL programs employing these statements cannot be
invoked as phantoms or batch jobs; these requests for terminal input would abort their execution.

In contrast, the &TTY_CONTINUE directive, and the QUERY and RESPONSE functions
without the -TTY option, seek their input from the command input stream. Therefore, they can
accept input from any of three sources:

• The terminal
• A COMINPUT file
• A &DATA group in a CPL program

If the CPL program that requests the input is invoked from the terminal, it takes its input from the
terminal. If the CPL program is invoked from a COMINPUT file, it seeks its input there. If it is
invoked by a &DATA directive, it gets its input from the &DATA group. The following
examples invoke a CPL program using these three methods.

From the User Terminal
The following CPL program contains a &TTY_CONnNUE directive. The program invokes the
EDITOR to edit a specified file, goes to the bottom of the file, goes into input mode, and waits
for input.

&DATA ED TESTFILE
B

&TTY_CONTINUE
&END
&RETURN

This program (named LENGTHEN_FILE.CPL) can be invoked from the terminal. A sample
session looks like this:

OK, R LENGTHEN_FILE. CPL
EDIT
B

INPUT
We can add lines
To this file.

EDIT
F I L E

5-6

Terminal Input and Output

From a COMINPUT File
The following example shows a command input file that invokes LENGTHEN_FILE.CPL and
inputs data to its &TTY_CONTINUE directive:

R LENGTHEN_FILE.CPL
Add this line
And this one
And this one.

FILE
CO -TTY

The first line of this COMINPUT file invokes the CPL program shown above. The second, third,
and fourth lines contain input to be added to TESTFILE. The fifth line is a blank line; it returns
the EDITOR to EDIT mode. The sixth line commands EDITOR to file TESTFILE and return.
The CO -TTY line closes the COMINPUT file and returns control to the terminal. First, control
returns to LENGTHEN_FILE, which returns to its caller, the command input file, which then
returns to the terminal.

A terminal session that runs this COMINPUT file looks like this:

OK, CO TTY_CONT.COMI
OK, R LENGTHEN,FILE.CPL
EDIT
B

INPUT
Add this line
And this one
And this one.

EDIT
FILE
TESTFILE
OK, CO -TTY

From an &DATA Group
The following example is an &DATA group in a CPL program that invokes another CPL program
(LENGTHEN_FILE.CPL) and inputs data to the &TTY_CONTINUE directive in that program:

&DATA R LENGTHEN_FILE. CPL
If we keep adding lines
This file will get very long.

FILE
SEND

5-7

CPL User's Guide

Again, the first line invokes LENGTHENJFILE.CPL; the next three lengthen it; and the fourth
and fifth close the file and leave the EDITOR.

A terminal session looks like this:

OK, R TTY_CONT.CPL
EDIT
B
/
INPUT
If we keep adding lines
This file will get very long.

EDIT
FILE
TESTFILE
OK,

Command Input Stream Error Handling
What happens if you forget the blank line before the FILE statement in the COMINPUT file or
the CPL program?

The COMINPUT file adds every line in its file (including the CO -TTY, which should terminate
the file) to TESTFILE. Then it returns to the terminal with an error message and a request for
input. The user then has to leave the EDITOR interactively in order to return to PRIMOS
command level. This sequence of events looks like this:

OK, CO TTY_CONT.COMI
OK, R LENGTHEN_FILE.CPL
EDIT
B

INPUT
Add this line
And this one
And this one.
FILE
CO -TTY

End of file. Cominput. (Input from terminal.)

EDIT
FILE
TESTFILE
OK,

5-8

Terminal Input and Output

The CPL program, on the other hand, recognizes that an error has occurred when it comes to the
&END statement in the &DATA group. It simply terminates with an error message, like this:

OK, R TTY_CONT
EDIT
B

INPUT
If we keep adding lines
This file will get very long.
FILE

CPL ERROR 35 ON LINE 5. LAST TOKEN WAS: "SEND".
The Primos command invoked by this &DATA block has read all
supplied input data and is requesting more. To suppress this
message and continue execution using terminal input, use the
&TTY directive.

SOURCE: &END

ER!

Note that either program would abort if it were being run as a Batch job or a phantom, since such
programs cannot seek help from the terminal.

Output

The TYPE Command
The format of the TYPE command is

TYPE text

text is a character string with a maximum of 1024 characters. The first line can contain 251
characters; additional lines of text can be added using the line continuation character (~). Each
additional line can contain as many as 261 characters, including the line continuation character.
When the TYPE command is executed, text is typed at the user's terminal.
The text string following the TYPE command does not have to be quoted, even if it contains
blanks. Variables and functions within the text string are evaluated. To prevent evaluation of
variables and functions, or to use special characters, enclose text in single quotation marks. TYPE
removes one set of quotation marks from around text before it displays it.

5-9

CPL User's Guide

For example,

TYPE Can not find %BOOK% (prints: Can not find SAMPLE)
TYPE 'Can not find %BOOK%' (prints: Can not find %BOOK%)
TYPE 'Can"t find %BOOK%' (prints: Can't find %BOOK%)
TYPE 'Can"t find '%BOOK% (prints: Can't find SAMPLE)

Since TYPE is an internal command, you can use it whenever a PRIMOS command can be used
within a CPL file. For example, you can write a program, called EDTEST.CPL, as follows:

&ARGS BOOK
/* Check for null argument

&IF [NULL %BOOK%] &THEN ~
&SET_VAR BOOK := [RESPONSE 'Please specify book']

ED %BOOK%
TYPE Do you want %BOOK% spooled?
filF [QUERY " TRUE] ~

&THEN SPOOL %BOOK%
TYPE Thank you.
TYPE Good-bye.

A terminal session using this program looks like this:

OK, R EDTEST.CPL SAMPLE
EDIT
p23
.NULL.
This is a sample file.
This is the second line of the file.
BOTTOM

INPUT
Here is a third line for the file.

EDIT
fi l e
SAMPLE
Do you want SAMPLE spooled?
yes
[SPOOL Rev. 21.0 Copyright (c) 1987, Prime Computer, Inc.]
Request 22 added to queue, 2 records : <MAIN1>GLENN>SAMPLE
Thank you.
Good-bye.
OK,

5-10

Terminal Input and Output

The &MESSAGE Clause
The format of the &MESSAGE clause is

&RETURN &MESSAGE text

Including the &MESSAGE clause in the &RETURN directive causes a CPL program to display a
message when it returns to its caller. Thus, it is useful for announcing the success or failure of a
program.
text may be any character string with a maximum of 1024 characters. You can continue messages
longer than a single line on additional lines by using tildes (~). text can contain function calls and
variable references. You do not need to quote text if it contains blanks. You should quote a
message text that contains special characters that are to be displayed literally. For example,

&IF %LEFTOVERS% = 0 &THEN~
&RETURN &MESSAGE It worked!

&ELSE~
&RETURN &MESSAGE %LEFTOVERS% left undone. ~

Go back and run it again.

Because the second &MESSAGE clause is not quoted, the CPL interpreter evaluates
%LEFTOVERS% before displaying the message.
Another application of the &MESSAGE clause informs the user that the command line for the
CPL program was entered incorrectly. For example,

&ARGS DIR
&IF [NULL %DIR%] &THEN &RETURN &MESSAGE 'You forgot to ~
input the DIR argument; rerun this program.'

5-11

Arguments With Type-checking
and Default Values

This chapter describes how to use the &ARGS directive to establish default values and data type
checking for CPL variables. It also describes the REST argument for the &ARGS directive. The
basic features of the &ARGS directive are described in Chapter 2.

Overview
Previous chapters of this guide include examples of programs that check for the existence of
needed arguments and take action if they do not find them.
The methods shown include the following:

Method
Setting up a default action (shown
in Chapter 2)

Using CPL's RESPONSE function
to demand the argument from the
user (shown in Chapter 5)

Using CPL's &RETURN AMES-
SAGE directive to terminate the
CPL program and tell the user the
appropriate command format
(shown in Chapter 5)

Example
&ARGS DIR
&IF [NULL %DIR%] ~

&THEN ATTACH MYDIR
&ELSE ATTACH %DIR%

&ARGS DIR
&IF [NULL %DIR%] ~

6THEN &SETJVAR DIR := ~
[RESPONSE 'Which directory?']

ATTACH %DIR%
&ARGS DIR
&IF [NULL %DIR%] &THEN ~

&RETURN &MESSAGE ~
'You forgot to input ~
the DIR argument; ~
rerun this program.'

6-1

CPL User's Guide

This chapter introduces

• A method of establishing a default value for each argument in the &ARGS directive.
A default value is a value that is used when the user does not supply a value. With this
method, when an argument is omitted from the command line, CPL automatically
assigns the argument its designated default value, rather than setting the argument to
the null value.

• A method for setting a type specification for each argument in the &ARGS directive.
A type specification indicates the type of data that is permissible; for example,
character string data, integer data, and the like. When this is done, each argument value
given on the command line is checked against the argument's specified type. If the
types do not match, the CPL program terminates with an explanatory error message.

• A special type of &ARGS directive argument, REST, which assigns the rest of the
command line to a single variable.

Specifying Default Values for Arguments
The format for specifying a default value for an argument is

&ARGS name-l:=default-l{; name-n:=default-n)

For example,

&ARGS DIR:=MYDIR; STRING:='This is the default'

The example establishes two arguments, DIR and STRING, and assigns a default value to each. If
you assign a default value to an argument, CPL uses the default value if the user does not specify
a value for that argument on the command line used to execute the CPL program. For example, if
you establish the two arguments without defaults,

6ARGS DIR; STRING

and the command line does not contain argument values,

R MYPROG.CPL

then running this program sets both arguments to the null value. If you specify default values in
the &ARGS directive, CPL sets these arguments to their default values rather than to null.
The default values established in &ARGS are substituted for the corresponding variable
references throughout your CPL program. A default value can be overridden by setting the
variable, either through a command line argument value or a &SET_VAR directive. Setting a
variable to null overrides the default value.
The default value can be a constant or a variable reference. It must be quoted if it contains a blank
or a special character. It may not be an expression or a function call.

6-2

Arguments With Type-checking and Default Values

Note
You can set a default value, a type specification, or both a default
value and a type specification for each argument. If you set a type
specification and no default value, the argument defaults to either a
null value or zero, depending on the type specification. If you set a
type specification, the default value you specify must be a legal value
for that data type. Refer to Table 6-1 for further details.

Table 6-1
Data Types for CPL Arguments

Data Type Explanation Default Value
CHAR Any character string of as many as 1024 characters,

lowercase letters converted to uppercase letters
(default).

CHARL Any character string of as many 1024 characters, low
ercase letters not converted.

»>

TREE A filename, directory name, or pathname, of as many
as 128 characters. The last element of the pathname
(that is, the final file or directory name) may contain
wildcard characters1.

ENTRY A filename of as many as 32 characters; may contain
wildcard characters1.

DEC A decimal integer2.
OCT An octal integer2.
HEX A hexadecimal integer2.
PTR Pointer, a virtual address in the format octal/octal

(segno/wordno)3.
7777/0

(the null pointer)
DATE Calendar date in the format mm/dd/yy.hh:mm:ss or yy-

mm-dd.hh:mm:ss.
>»

REST The remainder of the command line.
UNCL All unclaimed items on the command line. (Unclaimed

arguments are discussed in Chapter 13.)

The &ARGS directive does not perform a wildcard search. Wildcard characters are permitted values for these data types. Using
wildcards, you can supply a pathname from the command line to a WILD function within your CPL program. See Chapter 7.
Numeric arguments must be within the range -2?1 +1 ... 251 - 1 .
User specified default values are not supported for this data type.

6-3

CPL User's Guide

Specifying Data Types for Arguments
The format for specifying the data type for an argument is

&ARGS name-1 : type-1 {; name-n : type-n}

The format for specifying both the data type and default value for an argument is

&ARGS name-1 : type-1 = default-l {; name-n : type-n = default-n)

The following are examples of these two formats;

6ARGS DIR:TREE ; STRINGiCHARL

&ARGS DIR:TREE=MYDIR ; STRING:CHARL=' This is the default'

You can omit either type or default (or both) for any argument. Spaces may precede or follow the
equal sign, colon, and semicolon; they are not required.
The argument type specification establishes what type of data can be stored in a variable. The
types of data discussed thus far have been character strings and integers. You can specify these
data types, and others, in the &ARGS directive.
If you do not specify a data type for an argument, that argument defaults to the character string
data type (CHAR). This data type includes all typeable characters as legal values. The default
value for CHAR is the null string (").
Table 6-1 provides a complete list of the available data types and their default values. In most
cases, this default value is the null value. You can, of course, override this default value and
establish another value as the default value for a particular argument, as described earlier in this
chapter. Note, however, that the default value you establish must be a legal value for the data type
of the argument.

Examples of Data Type Specification
&ARGS DIR:TREE=MYDIR

This &ARGS directive declares a variable named DIR. DIR must be a valid treename (that is, a
pathname or directory name). Its default value is MYDIR.

&ARGS NAME:=XXXXX; NUMBER:DEC

This &ARGS directive declares two variables: NAME and NUMBER. NAME is of type CHAR
(by default); its default value is XXXXX. NUMBER is of type DEC; any value given for
NUMBER must be a decimal integer. Its default value is the system default value, 0.

6-4

Arguments With Type-checking and Default Values

&ARGS DIR:TREE=%.DIR%

This &ARGS directive declares a local variable named DIR. The value given must be a valid
treename. The default value is the current value of the global variable, .DIR. The global variable
file containing .DIR must be active for this default to function correctly. Otherwise, an invocation
without arguments produces the following error message:

OK, R MYPROG.CPL

CPL ERROR 1017 ON LINE 1. LAST TOKEN WAS: "&ARGS".
In this &ARGS directive, a default value expression contains an
undefined variable reference, or a syntax error in a variable
reference.

SOURCE: &ARGS DIR:TREE=%,DIR%

Execution of procedure terminated. MYPROG (cpl)
ER!

&ARGS HEXNUM:HEX = 4AB

This &ARGS directive declares a variable named HEXNUM, specifies its data type as HEX, and
gives it a default value of 4AB (1195 decimal). An argument of data type HEX can only accept
values that look like hexadecimal numbers. That is, it accepts strings that contain only the digits
0-9 and the letters A-F (or a-f), and that evaluate to a hexadecimal number between the limits of
-231 + 1 and 231 - 1. It cannot distinguish between decimal, octal, and hexadecimal numerals; it
accepts all three and interprets them as hexadecimal. For example, it interprets the decimal
number 20 as hexadecimal 20 (decimal 32).

&ARGS EIGHTBALL:OCT

This &ARGS directive declares an octal variable named EIGHTBALL. Octal numbers can
contain only the digits 0-7; therefore, a value for EIGHTBALL containing any other digits or
characters is rejected with the message

Object "9" is not a valid octal integer, (cpl) ER!

6-5

CPL User's Guide

How Type and Default Checking Works
When you use the &ARGS directive to specify type and default values, CPL takes the following
actions:

1. It reads the command line and assigns the argument values to the variables declared in
the &ARGS directive.

2. It checks whether the first argument (name-1) was omitted. If the argument was
omitted, CPL assigns it its default value, (default-1) as specified in the &ARGS
directive. If the argument has no specified default, CPL assigns it the system default
value, as shown in Table 6-1.

Note
Since these are positional arguments, the first argument is seen as
omitted only when all arguments are omitted. Otherwise, whatever
comes first on the command line (after the name of the CPL
program itself) is taken as the value of the first argument. (For
position independent arguments in CPL, see the section entitled
Option Arguments in Chapter 13.)

3. If the first argument was assigned a value in the command line, CPL checks to see if
the given value is of the right type. (Acceptable types are defined in Table 6-1.)

4. If the value is not of the right type, CPL displays an explanatory message and returns
the user to command level with an ER! prompt. For example,

OK, R EXAMPLE. CPL 5
Argument "5" is not a valid treename. (CPL)
ER!

5. If the value is of the right type, CPL accepts it and moves on to check the next
argument (or, if all arguments have been checked and accepted, to execute the next
directive or command).

An Example
Assume that X.CPL contains the following directive:

&ARGS WHO: ENTRY=JONES; HOWMANY:DEC=10

6-6

Arguments With Type-checking and Default Values

The following table shows some invocations of X.CPL and their results:

I nvoca t i on A rgumen t Va lues
R X. CPL SMITH 20 WHO = SMITH

HOWMANY = 20
R X. CPL CLARK WHO = CLARK

HOWMANY = 10 (default)
R X. CPL WHO = JONES (default)

HOWMANY = 10 (default)
R X. CPL 50 Error generated;

50 is not a valid filename.

Specifying the REST Data Type for Arguments
REST is a special argument data type that allows you to pass the remainder of the command line
(after all other arguments have been read) to a single variable. Using a REST argument, you can
pass PRIMOS option arguments as positional arguments, without quoting them. The rules for
REST arguments are as follows:

• Only one REST argument is permitted in an &ARGS directive.
• The REST argument must be the last argument in the directive.

For example,

&ARGS FILENAME: TREE; OTHER_ARGS :REST

In this example, the first argument on the command line must be a filename (or pathname).
Everything that follows the first argument on the command line becomes the value of
OTHER_ARGS. No quotation marks are required.

A Sample Program
A sample program, using the &ARGS directive, spools a file to a printer and permits you to
specify additional printing options at runtime:

/* Usage R SPL.CPL filename other_args
&ARGS FILENAME:TREE; OTHER_ARGS:REST
SPOOL %FILENAME% -AT CAROUSEL %OTHER ARGS%

6-7

CPL User's Guide

Here are two sample terminal sessions. The first does not use the REST argument. The second
assigns the value -FORM NOW -LIST to the REST argument. Note that this argument value
does not have to be quoted or unquoted.

OK, R SPL.CPL MYFILE
[SPOOL Rev. 21.0 Copyright (c) 1987, Prime Computer, Inc.]
Request 3 added to queue, 2 records : <MAIN1>GLENN>MYFILE

OK, R SPL.CPL MYFILE -FORM NOW -LIST
[SPOOL Rev. 21.0 Copyright (c) 1987, Prime Computer, Inc.]
Request 4 added to queue, 2 records : <MAIN1>GLENN>MYFILE

System XXX
Request Time User F i l e No Size State

7 Apr 87
1 1 2 4 1 S M I T H
2 1 2 3 5 J O N E S
3 1 2 4 2 B R O W N
OK,

MEMO.41
CL-DEPT.O
MYFILE

14
2 6 Defer
1 2 P r i n t

QA.TST

Default Values for REST Arguments
Like any other type of argument, a REST argument can be given a default value. For example,

&ARGS FILENAME:TREE; OTHER_ARGS:REST= -LIST
SPOOL %FILENAME% -AT CAROUSEL %OTHER_ARGS%

A sample terminal session with this program looks like this:

OK, R SPL2.CPL MYFILE
[SPOOL Rev. 21.0 Copyright (c) 1987, Prime Computer, Inc.]
Request 3 added to queue, 2 records : <MAIN1>GLENN>MYFILE

System XXX
Request Time User F i l e No Size State

7 Apr 87
1 1 2 4 1 S M I T H
2 1 2 3 5 J O N E S
3 1 2 4 2 B R O W N
OK,

MEMO.41
CL-DEPT.O
MYFILE

1 1 4
2 6
1 2

De fe r
P r i n t

QA.TST

Although the command line in this example does not specify the -LIST option, the program lists
the spool queue. This is because the default value for the REST argument is -LIST.

6-8

Processing Groups of Files

This chapter describes CPL features that you can use to select multiple file system objects. It
explains the PRIMOS conventions for filename suffixes and wildcarding, and how to use these
with the BEFORE, AFTER, and WILD functions.

Selecting Multiple Files and Directories
PRIMOS file-naming conventions help you set up your directory so that you can see easily what
types of files it contains. By convention, files with similar uses are given the same file suffix.
The Prime wildcard facility lets you access groups of similarly named files (or subdirectories)
within a directory. To access such a group of files, you specify the part of the filename that is the
same in all of the files in the group, and substitute a wildcard character for the part of the
filename that is different for each file.
CPL provides functions that allow you to take advantage of suffix naming conventions and
wildcards to perform operations on selected groups of files or directories.

Using Suffixes: The BEFORE
and AFTER Functions
A filename can consist of several components. Each component of a filename (except the first
component) begins with a dot. The final component of a filename is the suffix. The other
components of the filename are known as the base name. Filenames with more than three
components are not recommended.
PRIMOS file-naming conventions use suffixes to identify various sorts of files. Suffixes, such as
.RUN and .BIN, identify files with specific properties; you can also create your own suffixes to
identify files that you consider similar.
CPL's BEFORE and AFTER functions make it easy to break a filename into its separate
components. For example, you can use these functions to separate the name of a source file into
the base name and the compiler name suffix, dropping the dot in the process.

7-1

CPL User's Guide

The BEFORE Function
The format of the BEFORE function is

[BEFORE string-1 string-2]

The BEFORE function returns the part of string-1 that occurs before string-2. For example,

[BEFORE ABCD C]

returns

AB

Hence

&S FILE := [BEFORE SOURCE.F77 .]

sets the value of FILE to SOURCE.
If string-2 is not part of string-1, the BEFORE function returns the entire string-1. For example,

[BEFORE SOURCE.F77 ,]

returns

SOURCE.F77

If string-2 represents the leftmost characters in string-1, the BEFORE function returns the null
string.

The AFTER Function
The format of the AFTER function is

[AFTER string-1 string-2]

The AFTER function returns as its value the portion of string-1 that occurs after string-2. For
example,

[AFTER ABCD C]

returns

D

7-2

Processing Groups of Files

Hence,

&S COMPILER := [AFTER SOURCE.F77 .]

sets the value of COMPILER to F77.

If string-2 is not part of string-1, or if string-2 represents the rightmost characters in string-1, the
AFTER function returns the null string. For example,

[AFTER SOURCE .]

returns

An Example
Here is an example of these functions in action. The CPL program shown below compiles, links,
and runs any V-mode or I-mode program, using the filename as its argument. This program,
named CLR_ALL.CPL, is a revision of the "compile, load, and run" program shown in Chapter 2.

/* CPL program to compile, BIND and
/* execute a program in any language
/* Usage: R CLR_ALL filename

/ *
&ARGS FILENAME; OPTION_LIST:REST
&S COMPILER := [AFTER %FILENAME% .]
&S SOURCE := [BEFORE %FILENAME% .]
/ *
/* Check for compiler suffix
&IF [NULL %COMPILER%] ~
&THEN &SET_VAR COMPILER := [RESPONSE 'Please specify compiler']
/* compile the program
%COMPILER% %FILENAME% -64V -B %SOURCE%.BIN %OPTION_LIST%
/* set up language library name for BIND
&SELECT %COMPILER%

&WHEN PLl, CBL
&S LIBFILE := %COMPILER%LIB

&WHEN PL1G, VRPG
&S LIBFILE := %COMPILER%LB

&WHEN CC
&S LIBFILE := C_LIB

&OTHERWISE
&S LIBFILE := PASLIB

&END

7-3

CPL User's Guide

/* run the BIND linker
&DATA BIND

LOAD %SOURCE% /* BIND finds file source.BIN
LI %LIBFILE%
L I
DYNT -ALL
FILE %SOURCE%.RUN /* BIND names output file source.RUN

&END
/* execute the program
R %SOURCE% /* execute runfile
&RETURN

Wildcards
Wildcards allow you to specify groups of files within a directory using a single wildcard name. A
wildcard name is a file or subdirectory name in which one or more characters have been replaced
by one or more wild characters. A wild character may represent any other character (or
characters), according to the rules shown in Table 7-1. A number of examples follow.

Character
@

@@

+
A

Table 7-1
Wild Characters

Function

Replaces any number of characters within one component of a filename or
directory name. Stops matching at the dot (.) that separates a name and its
suffix.
Replaces any number of characters in any number of components within a
file or directory name.
Replaces a single character.
Negation character. The negation character must be the first character in the
wildcard name. A wildcard name that begins with A matches all names that
do not match the rest of the wildcard name.

Some Examples
Assume a directory, MYDIR, that contains the following files:

FOO.CBL
BARR2.CBL
CLR.CPL
EDD.COMO

BARR1.CBL
BARR2.RUN
EDD.CPL
EDD.COMO.OLD

BARR1.RUN
FOORUN
SCROLL

7-4

Processing Groups of Files

The wildcard name FOO.@ matches all two-component names within MYDIR that begin with
FOO:

F O O . C B L F O O . R U N

The wildcard name (2>.RUN matches all two-component names that end with .RUN:

B A R R l . R U N B A R R 2 . R U N F O O . R U N

The wildcard name BARR+.CBL matches

BARRl .CBL BARR2.CBL

The wildcard name BARR+.@ matches

BARRl.CBL BARR2.CBL
BARRl.RUN BARR2.RUN

The wildcard name EDD.@ matches

E D D . C P L E D D . C O M O

EDD.@ does not match EDD.COMO.OLD, because the single @ cannot cross the dot (.) to
match the suffix, OLD.

The wildcard name ED@@ matches

E D D . C P L E D D . C O M O E D D . C O M O . O L D

The wildcard name @@L matches all names that end with L:

F O O . C B L B A R R 1 . C B L B A R R 2 . C B L
C L R . C P L E D D . C P L S C R O L L

The wildcard name @L matches all one-component names that end in L:

SCROLL

The wildcard name A@.CPL matches all files in the directory that do not end with .CPL, or that
do not have two components:

F O O . C B L B A R R l . C B L B A R R 1 . R U N
F O O . R U N B A R R 2 . C B L B A R R 2 . R U N
S C R O L L E D D . C O M O E D D . C O M O . O L D

7-5

CPL User's Guide

The wildcard name @@ matches all names in the directory, regardless of the number of
components they contain:

F O O . C B L B A R R 1 . C B L B A R R 1 . R U N
BARR2.CBL BARR2.RUN FOO.RUN
C L R . C P L E D D . C P L S C R O L L
EDD.COMO EDD.COMOOLD

Using Wildcards: The WILD Function
CPL's WILD function produces a list of all names within a directory that match one or more
wildcard names. It has two forms, discussed below. The first form returns all matching names at
once, in a single list. Names within the list are separated by blanks. The second form, which uses
the -SINGLE argument, returns one matching name per invocation until the list of names is
exhausted.
The reason for the two forms of the WILD function is that the list produced by the WILD
function is limited to 1024 characters. If a longer list is produced, an error occurs that aborts the
CPL program. Because the WILD function with the -SINGLE argument returns one name at a
time, it can handle cases that would produce over-long lists.

The Basic WILD Function
The basic format of the WILD function is

[WILD wild-name-1 {...wild-name-n} {options}]

The WILD function matches the wildcard names wild-name-1 through wild-name-n. wild-name-1
can be either a wildcard filename or a wildcard pathname. If wild-name-1 is a full pathname, all the
wildcard names are searched for in the directory that wild-name-1 specifies. If wild-name-1 is a
filename, all the wildcard names are searched for in the current directory. The WILD function
cannot use the search rules facility to search multiple directories, wild-name-2 through wild-name-n
specify additional wildcard names within the directory specified in wild-name-1', they may not be
pathnames. For example,

ATTACH MYDIR
6SET_VAR SOURCES := [WILD @.CBL @.PMA]

This example creates a list of all CBL and PMA source files in the currently attached directory
(MYDIR), and stores the list in the variable, SOURCES.

ATTACH JONES
&SETJVAR SOURCES := [WILD SMITH>@.CBL @.PMA]

7-6

Processing Groups of Files

This example creates a list of all CBL and PMA source files in directory SMITH, and stores the
list in the variable, SOURCES.

options are optional arguments for the WILD function that place limits on the matching of objects
by the wildcard names. You can specify one or more options in any sequence. The available
options are as follows:

O p t i o n M e a n i n g
- A C L S e l e c t s o n l y A C L s .
-AFTER date Selects only objects created or modified after the date

specified by date. The date specified here is compared
with each file's DTM (Date and Time Modified) attri
bute. The format for date is MM/DD/YY.

-BEFORE date Selects only objects created or last modified before the
specified date. The format for date is MM/DD/YY.

-DIRECTORY Selects only directories.
- F I L E S e l e c t s o n l y fi l e s .
-SEGMENT DIRECTORY Selects only segment directories.

Some examples using options are as follows:

SETJVAR .OBJ := [WILD @@ -SEGDIR]

This example creates a list containing the names of all segment directories in the current
directory, for example, FOO.SEG.

SETJVAR .OBJ := [WILD Q.CBL -BF 05/30/86]

This example lists all CBL source files created or last modified before May 30, 1986, for
example, FOO.CBL and BARRl.CBL.

SETJVAR .OBJ := [WILD MYDIR>@@ -DIR]

This example lists all subdirectories in the directory MYDIR, for example, REPORTS MEMOS
OTHER STUFF.

The WILD Function With the -SINGLE Argument
The -SINGLE argument causes the WILD function to return object names one at a time, rather
than writing them into a list. Use it when you think that WILD's list may overrun its limit of 1024
characters or when it is more convenient to deal with the filenames one at a time.
The format of this version of the WILD function is

[WILD wild-name-1 {...wild-name-n} {options} -SINGLE unit-var]

7-7

CPL User's Guide

You specify the wild-names and options arguments in the same way as those for the basic WILD
function.

Following the -SINGLE argument, you specify a unit-var variable name. The first invocation of
WILD automatically assigns this unit-var variable the number of the file unit that WILD used to
open the directory. Subsequent invocations of WILD use this file unit number to locate this open
directory, so that WILD can continue searching.
You must set unit-var to zero before invoking WILD for the first time. Setting unit-var to zero
distinguishes that first call (in which WILD opens the file unit and returns the first matching
name) from subsequent calls (in which WILD takes the next name from the open file unit). An
example of the use of the WILD function with the -SINGLE option follows:

&SETJVAR UN := 0
&SET_VAR ONE_NAME := [WILD Q.LIST -SINGLE UN]

The first &SETJVAR directive defines the variable UN and sets it to zero. The second &SETJVAR
directive causes CPL to perform the following steps:

1. Open the current directory on some available unit.
2. Change the value of UN to the number of the file unit used.
3. Find the first listing file in the directory.
4. Set the value of the variable ONE_NAME to the name of the first listing file in the

directory.

Subsequent invocations of the same function call return the second listing file, the third listing
file, and so on, until there are no more listing files to be found. Then WILD returns a true null
string, and closes the directory file unit.

Using the WILD Function in Loops
Why would you want to produce a list of file or directory names? One reason is that you want to
do something with each of the files or directories on the list. For example, you might want to
spool all your RUNOFF files, obtain a listing of the contents of each of your subdirectories, or
update a group of reports or data files.
You can easily perform these tasks by using the WILD function to control a loop, thus
performing the desired process once for each item on the list.
CPL offers a variety of loops, which are discussed in detail in Chapter 9. Among these loops are
two that work most efficiently with the WILD function: the &DO &LIST loop and the &DO
&ITEMS loop. Use the &DO &LIST loop with the basic WILD function to get the entire list of
file or directory names at one time. Use the &DO &ITEMS loop with WILD's -SINGLE
argument. An example of each of these types of loop is shown here. Full explanations of &DO
&LIST and &DO &ITEMS are given in Chapter 9.

7-8

Processing Groups of Files

Example of &DO &LIST Loop: The following program spools all the RUNOFF files
(ending in .RUNO) that are located in the user-specified directory PATH:

& A R G S P A T H / * S p e c i f y d i r e c t o r y
&DO X &LIST [WILD %PATH%>@ . RUNO -FILES]

SPOOL %PATH%>%X% /* Spool each file in turn
& E N D / * E n d l o o p
& R E T U R N / * E n d p r o g r a m

Example Of &DO &ITEMS Loop: If you have many RUNOFF files in your directory, you
could write the same program with a &DO &ITEMS loop, as follows:

& A R G S PAT H / * S p e c i f y d i r e c t o r y
&SET_VAR UNIT := 0 /* Initialize variable for file unit
&DO X &ITEMS [WILD %PATH%>@ .RUNO -FILES -SINGLE UNIT]

SPOOL %X% /* Spool each item
& E N D / * E n d l o o p
& R E T U R N / * E n d p r o g r a m

For further examples of loops using the WILD function, see Chapter 9.

7-9

Decision Making

This chapter describes various forms of the &IF and &SELECT directives. The &IF and
&SELECT directives are among the most powerful features of CPL. When the CPL interpreter
encounters one of these directives, it tests a value, then uses the results of that test to decide what
line of the program to execute next. The &IF directive performs a test to select one of two
possible statements for execution. The &SELECT directive performs a test to select one of many
possible statements for execution.
The basic &IF directive is explained in Chapter 2. This chapter assumes an understanding of the
material in that chapter.

&IF and &SELECT are only two of the control directives that CPL provides. Table 8-1 shows the
complete list of available CPL control directives.1

Table 8-1
Control Directives

Directive Action
&IF...&THEN...&ELSE Chooses between two alternatives. &IF statements may be

nested to allow further decisions to be made on the basis of
the former decisions.

&SELECT Chooses among any number of alternatives.
&DO group Allows a group of statements to be treated logically as if it

were a single statement.
&DO loop Allows a group of statements to be executed

• n times, with n as a pre-set number
• n times, with n computed at runtime
• While some logical expression is true (or false)
• Until some logical expression becomes true (or false)
• Until a list of items is exhausted

&GOTO Allows arbitrary transfer of control from one place within a
program to another.

This chapter does not describe control directives that do not perform a test, such as the &GOTO directive and the &DO group.
Those directives are described in Chapter 2. This chapter also does not describe directives that perform loop operations. &DO
loops are discussed in Chapter 9.

8-1

CPL User's Guide

&IF Directives Using Logical Operators
A single &IF...&THEN...&ELSE directive can choose between any two alternatives. For example,

&IF %A% > 10 &THEN R BIGNUM
&ELSE R SMALLNUM

You can combine multiple expressions into a single test by the use of the logical AND (&) and
inclusive OR (I) operators. When logical AND is used, both expressions must be true for the test
to be true. When inclusive OR is used, if either expression (or both) is true, the test is true.

For example,

&IF %A% > 10 & %B% > 10 ~
&THEN R BIGNUM
&ELSE R SMALLNUM

In the previous example, BIGNUM is executed if the values of both A and B are greater than 10.

&IF %A% > 10 | %B% > 10 ~
&THEN R BIGNUM
&ELSE R SMALLNUM

In this example, BIGNUM is executed if the value of either A or B is greater than 10.

Note that each operator must be preceded and followed by at least one space. You can control the
sequence in which multiple expressions are evaluated by enclosing expressions in parentheses; the
innermost nested expression is always evaluated first. Expressions without parentheses or
expressions on the same level of nested parentheses are evaluated from left to right.

A Sample Program
The following CPL program uses logical ANDs and ORs to decide which payroll program to run.
If the program is run on March 31, June 30, September 30, or December 31, it generates a
quarterly report. If the program is run on December 31, it also generates the annual report. It
always runs a standard payroll program. (For details on the DATE function, used by this program,
see Chapter 12.)

&SET_VAR MONTH := [DATE -MONTH]
& SETJVAR DAY := [DATE -DAY]
/* If this is the end of the quarter,
/* then generate the Quarterly Report
&IF (((%DAY% = 31) ~

& ((%MONTH% = MARCH) | (%MONTH% = DECEMBER))) ~
| ((%DAY% = 30) ~

& ((%MONTH% = JUNE) | (%MONTH% = SEPTEMBER)))) ~
&THEN R QUARTERLY. RUN

/* If this is the end of the year,
/* then generate the Annual Report

8-2

Decision Making

r

&IF ((%DAY% = 31) & (%MONTH% = DECEMBER)) ~
&THEN R ANNUAL.RUN

/* Always run the payroll program
R PAYROLL.RUN
&RETURN

Nested &IF Directives
If you need to choose among three or more alternatives, you may use either a &SELECT directive
or nested &IF directives. Nested &IF directives use another &DF directive as the argument to the
&THEN clause, the &ELSE directive, or both. For example,

&IF %A% > 10 &THEN R BIGNUM
&ELSE &IF %A% =10 &THEN R TENPROG

&ELSE R SMALLNUM

In this example, BIGNUM is executed if the value of A is greater than 10; TENPROG is executed
if the value of A is equal to 10; and SMALLNUM is executed if the value of A is less than 10.
(Note that each &ELSE directive matches, or depends on, the &THEN clause immediately
preceding it.) There is no limit to the number of &IF directives that can be nested in this manner.
Here is another example, from the field of education;

&IF % AVERAGE % > 89 &THEN &S GRADE := A
&ELSE &IF %AVERAGE% > 79 &THEN &S GRADE := B

&ELSE &IF %AVERAGE% > 69 &THEN &S GRADE := C
&ELSE &IF %AVERAGE% > 59 &THEN &S GRADE := D

&ELSE &S GRADE := F

Figure 8-1 diagrams nested &IF directives.

8-3

CPL User's Guide

Action-6

Action-1

Action-2

Action-3

Action-4

Action-5

&IF %A% =10 &THEN action-1
&ELSE filF %A% = 20 &THEN action-2

&ELSE &IF %A% =30 &THEN action-3
&ELSE &IF %A% =40 &THEN action-4

&ELSE &IF %A% =50 &THEN action-5
&ELSE action-6

Figure 8-1
Nested &IF Directives

8-4

Decision Making

Nested &IF and &ELSE Directives
A more complex form of nested &IF directive is one in which both &DF and &ELSE directives
are nested. With this construction, use the following rule for matching &THEN and &ELSE
directives: An &ELSE directive matches the last &THEN directive preceding it that is not already
matched by an &ELSE directive. Examples of such matching are shown in Figure 8-2.

&IF test-1
{ 6THEN true-action-1&ELSE false-action-1

&IF test-1 <
_„„„ „.„ ^ ^ „ ffiTHEN true-action-2&THEN &IF test-2 < „„„„ ^ ,

|^&ELSE false-action-2
^fiELSE false-action-1

&THEN true-action-1
&IF test-1 &ELSE &IF test-2

{&THEN true-action-2&ELSE false-action-2

Figure 8-2
Matching of &THEN and &ELSE Statements

Here is an example of nested &IF and &ELSE directives:

&IF %a% > 50
&THEN

&IF %B% > 50
&THEN RESUME MAXIMUM
&ELSE RESUME MAJOR

&ELSE
&IF %C% > 10

&THEN RESUME MINOR
&ELSE RESUME MINIMUM

/*lst &IF tests value of A
/*take this path if A > 50
/*nested &IF tests value of B
/*A and B both > 50
/*A > 50, B <= 50
/*take this path if A <= 50
/♦another 2nd level test
/*A <= 50, C > 10
/*A <= 50, C <= 10

8-5

CPL User's Guide

The decisions made by this example are diagrammed in Figure 8-3. Notice how the decision
levels shown in this figure are reflected in the indentation of the example. Such indentations help
you remember which &THEN and &ELSE pair goes with each &IF. Also note where line
continuation characters (~) are required in this example.

YES

YES

RESUME
MAXIMUM

NO

RESUME
MAJOR

YES

RESUME
MINOR

NO

RESUME
MINIMUM

Figure 8-3
Nested &IFand &ELSE Directives

8-6

Decision Making

r

The &SELECT Directive
&IF directives can handle any situation in which you perform a test and then take action based on
the result of that test. However, deeply nested &IF directives and &IF directives that contain
many logical ORs are difficult to read. Therefore, when you want to choose between many
alternatives, use the &SELECT directive, which provides a clear presentation of the test
condition, its possible results, and the action to be taken in each case. Figure 8-4 diagrams the
&SELECT directive.

&SELECT Directive Format
The format of the &SELECT directive is as follows:

&SELECT key-expression
&WHEN expression-la {,expression-lb, expression-lc...}

action-1
&WHEN expression-2a (expression-2b, expression-2c...}

action-2

(&OTHERWISE
action-n}

&END

key-expression is the value that is used to select an option. In a &SELECT directive, each option
represents one possible value of key-expression, key-expression may be a variable reference, a
function call, or a string, arithmetic, or logical (Boolean) expression. For example,

&SELECT %COMPILER%

& SELECT %A% + %B%

&SELECT [DATE -DOW]

expression-1 through expression-n represent possible values of key-expression. An expression can
be a literal, a variable reference, a function call, or a string, arithmetic, or logical expression. A
&SELECT directive can include expressions of different types; for example, one &WHEN clause
can test for a Boolean value while others test for integer values, expression cannot be a CPL
directive, such as a &DO group.
In the example &SELECT % COMPILER %, each expression represents a possible value of the
variable, %COMPILER%. In the example &SELECT [DATE -DOW], each expression represents
a possible result returned by the DATE function. In the example &SELECT %A% + %B%, each
expression is an integer or an arithmetic expression representing a possible value for the sum of
the current values of A and B.

8-7

CPL User's Guide

10

Action-1

20

Action-2

30

Action-3

40

Action-4

50

Action-5

Other

&SELECT %A%
&WHEN 10

act ion-1
&WHEN 20

act ion-2
&WHEN 30

act ion-3
&WHEN 40

act ion-4
&WHEN 50

act ion-5
&OTHERWISE

act ion-6
SEND

Figure 8-4
The &SELECT Directive

8-8

Decision Making

action-1 through action-n are CPL statements. One of these statements is executed if the key-
expression value matches the expression value for that action. Only one action is executed in each
&SELECT directive, action-1 through action-n may be any type of CPL statement; for example,
a PRIMOS command, a CPL directive, a &DO group, or a &DATA group.

The optional &OTHERWISE clause executes its action if the key-expression value matches none
of the expression values.

How a &SELECT Directive Works
When the CPL interpreter reads a &SELECT directive, it takes the following actions:

1. It evaluates key-expression.
2. It searches through the &WHEN directives until it finds an expression that is equal to

the current value of key-expression.
3. When it finds a match, it executes the action statement immediately following that

&WHEN directive.
4. As soon as it finds that first match and executes the accompanying statement, it drops

to the end of the &SELECT group. It continues processing the CPL file by executing
the statement that follows the &SELECT group &END directive.

5. If it finds no match, but does find an &OTHERWISE directive, it executes the action
statement immediately following the &OTHERWISE directive.

6. If it finds neither a match nor an &OTHERWISE directive, it executes none of the
&SELECT group's statements. It continues processing the CPL file by executing the
statement that follows the &SELECT group &END directive.

Multiple Expressions in a &WHEN Clause
Following a &WHEN directive, you can list more than one expression. Multiple expressions are
separated by commas. If any one of the listed expressions matches the key-expression, the action
for that &WHEN clause is executed. For example,

&SELECT %A%
&WHEN 10, 20, 30

R MYACTION

Note that a variable reference used in a &WHEN clause can only evaluate to a single expression.
For example, assume that variable B has the value '5, 10, 15', and that it is used in a &SELECT
directive beginning

&SELECT %A%
&WHEN %B%, 20, 25

8-9

CPL User's Guide

This example tests the value of A three times: once against the quoted character string '5, 10, 15',
once against the integer value 20, and once against the integer 25. It does not test for the integers
5, 10, or 15. If the value of A is 20, the &WHEN test is TRUE; if the value of A is 10, the
&WHEN test is FALSE.

Logical Expressions in a &WHEN Clause
Both the key-expression and the &WHEN clause expressions can represent logical (Boolean)
values. A logical value can be TRUE, FALSE, T, or F (uppercase or lowercase). The null value
(") is evaluated as FALSE. The following are two examples of &SELECT directives that use
logical values:

&SELECT TRUE
&WHEN %A% < 5

R SMALLNUM
&WHEN %A% >= 5

R BIGNUM
&END

In this first example, each &WHEN clause expression is an arithmetic expression that either
evaluates TRUE or FALSE. If %A% = 4, this program runs SMALLNUM; if %A% = 6, it runs
BIGNUM.
You can write the same program another way:

&SELECT %A% < 5
&WHEN TRUE

R SMALLNUM
&WHEN FALSE

R BIGNUM
SEND

In this second example, it is the key-expression that is evaluated as TRUE or FALSE. If %A% = 4,
this program runs SMALLNUM; if %A% = 6, it runs BIGNUM.

&SELECT Examples
The first example demonstrates the use of multiple expressions in &WHEN clauses. In this
example, the &SELECT directive adds the values of A and B, then matches the sum against the
specified integers.

&ARGS A :DEC; B:DEC
&SELECT %A% + %B%

&WHEN 10, 20, 30, 40, 50
RESUME RAND1

&WHEN 5, 15, 25, 35, 45
RESUME RAND2

8-10

Decision Making

&WHEN 60, 70, 80, 90, 100
RESUME RAND3

&WHEN 55, 65, 75, 85, 95
RESUME RAND4

&OTHERWISE
RESUME RAND5

SEND

The second example applies the &SELECT directive to the academic problem of turning students'
numeric averages into letter grades. It uses Boolean expressions for its tests. Each Boolean
expression produces a value of either TRUE or FALSE. The first TRUE expression thus equals
the key-expression (&SELECT TRUE) and ends the search.

&ARGS AV
&SELECT TRUE

&WHEN %AV% <= 60
&S GRADE : =

&WHEN %AV% <= 70
&S GRADE : =

&WHEN %AV% <=: 80
&S GRADE : =

&WHEN %AV% <= 90
&S GRADE : =

&OTHERWISE
&S GRADE : =

The final example takes as input the name of a month of the year and responds with the number
of days in that month.

&ARGS MONTH
&SELECT %MONTH%

&WHEN "
&RETURN &MESSAGE 'No month specified'

&WHEN FEBRUARY
&DO
&IF [QUERY 'leap year'] &THEN ~

&S DAYS := 29
&ELSE SS DAYS : = 28
&END

&WHEN SEPTEMBER, APRIL, JUNE, NOVEMBER
&S DAYS := 30

£OTHERWISE
&S DAYS := 31

&END
TYPE Number of days is %DAYS%

8-11

Loops

This chapter describes various forms of the &DO directive that are used for performing loop
operations. Loops are useful when you want some operation (or operations) to be carried out
repeatedly, with (or without) minor variations; for example, when you want many source files
compiled or spooled, or many lines in a data file updated.
CPL provides a wide variety of loops. This chapter contains

• An overview of the sorts of loops CPL provides, the format of loops in general, and
the behavior of loops in general

• A detailed explanation of how to use each kind of loop CPL provides

Overview
CPL provides the following sorts of loops:

• The counted &DO loop. For example, &DO I : = 1 &TO 100 &BY 5
• The &DO & WHILE loop. For example, &DO &WHILE %J% <= 100
• The &DO &UNTIL loop. For example, &DO &UNTIL % J% > 100
• The counted &DO loop combined with a & WHILE or &UNTIL test. For example,

&DO I := 1 &TO 100 &WHILE %J% > 20
• The &DO &REPEAT loop, which is usually combined with a &WHILE or &UNTIL

test. For example, &DO I := 50 &REPEAT %I% * %I% &WHILE %l% <= 100000
• The &DO &LIST loop. For example, &DO I &LIST %var_list% or &DO I &LIST

5 36 489
• The &DO &ITEMS loop, a variant of the &DO &LIST loop. For example, &DO I

&ITEMS [WILD Q.F77 -SINGLE UNIT]

9-1

CPL User's Guide

Loop Formats
All loops have the same basic format:

&DO {index-var} loop-instructions
statement-1
statement-2

statement-n
&END

index-var is a counter that is incremented each time the loop is performed, index-var can be any
valid variable name. It may not be an expression. The use of an index-var is required in all loops
except the &DO &WHILE and &DO &UNTIL loops.
loop-instructions contain

• A starting value for index-var (if index-var is used)
• A method for incrementing index-var (if index-var is used)
• One or more tests for loop completion

The presence of index-var and loop-instructions distinguish the iterative &DO loop from the
simple &DO group. When the CPL interpreter reads the word &DO, it checks for index-var and
loop-instructions. If it finds neither, it executes the &DO group once. If it finds index-var alone,
or if it finds incorrect instructions, it displays an error message. If it finds syntactically correct
loop-instructions, it prepares to execute the loop from zero to an infinite number of times,
according to the instructions.

Loop Execution
When CPL encounters a loop statement during program execution, it performs the following
actions. (Figure 9-1 contains the corresponding flow chart.)

1. If index-var is present, CPL sets it to its initial value. CPL tests this value for loop
completion. If the loop is complete, control passes to the next statement after the loop.

2. If a &WHILE clause is present, CPL tests it for loop completion. If the loop is
complete, control passes to the next statement after the loop.

3. If the loop has not completed, CPL executes statement-1 through statement-n.
4. When execution reaches the &END statement that closes the loop, CPL tests the

&UNTIL clause (if there is one). If it tests out TRUE, the loop is complete. Execution
continues with the next statement after the loop.

5. If no &UNTIL clause is TRUE, execution returns to the top of the loop.

9-2

Loops

Set Index-var to
Initial/Next Value

Execute Loop

Exit Loop

Figure 9-1
Flow of Control in CPL Loops

9-3

CPL User's Guide

6. At the top of the loop, CPL sets index-var to its next value, then tests the index-var
and/or &WHILE clause for loop completion.

7. If these tests are not TRUE, CPL executes statement-1 through statement-n again.
8. And so on, until some test for completion (or some &GOTO or &RETURN statement

inside the loop) stops execution of the loop. If no test (or directive) ever stops the loop,
the loop executes "forever" — that is, until the user presses CONTROL-P or the
BREAK key, or until someone forcibly terminates or logs out the CPL process.

When a loop terminates, index-var retains the last value it reached during execution of the loop.
In a counted loop, this is the first out-of-range value reached. For example, for the loop
&DO I := 1 &TO 10, the value of I at normal termination is 11. When &DO &LIST and &DO
&ITEMS loops terminate, their index-vars are null.
If a loop is halted by execution of a &RETURN or &GOTO, index-var retains whatever value it
had when the &RETURN or &GOTO was executed.

Note
You may write a &GOTO that exits from a loop, going from a point
inside the loop to a point outside it. You may not use a &GOTO to
enter a loop; that is, you may not &GOTO a point inside a loop from
any point outside the loop. (If you write such a &GOTO into a CPL
program, you get an error message from the interpreter when you try
to execute the program.) Figures 9-2 and 9-3 show examples of legal
and illegal uses of &GOTO.

&DO I : =

&GOTO
&END

1 &TO

EXIT

100000 &BY

&LABEL EXIT

•

Figure 9-2
Legal Use of &GOTO

9-4

Loops

&GOTO THERE
&DO I : = 1

& LABEL THERE

&T0 100000 &BY 2

&END

Figure 9-3
Illegal Use of &GOTO

Nested Loops
Loops in CPL may be nested; that is, one loop may be written inside another. Nested loops are
shown in the following sample program, called NEST.CPL:

&DO A := 10 &TO 30 &BY 10 /* Start outer loop
TYPE %A%
&DO B := 1 &TO 3 /* Start inner loop

TYPE %B%
& E N D / * E n d i n n e r l o o p

& E N D / * E n d o u t e r l o o p

When loops are nested, the outer loop begins executing first. When it reaches the inner loop, the inner
loop executes until it is completed. Then the outer loop continues executing. The inner loop always
ends first. Loops cannot overlap; the inner loop is always completely enclosed in the outer loop.
Each time the outer loop executes, the inner loop is re-initialized, and executes from start to
completion again. When the outer loop does not execute, the inner loop cannot execute.
Here is what happens when you run NEST.CPL:

OK, RESUME NEST.CPL
10
1
2
3
20
1
2
3
30
1
2
3
OK,

Loops may be nested as deeply as you can keep track of them.
9-5

CPL User's Guide

Counted Loops
Counted loops have the format

&DO index-var := start-value &TO stop-value {&BY increment}
{&WHILE test} (&UNTIL test}

index-var is any valid variable name, start-value and stop-value may be integers, expressions,
variable references, or function calls. They must evaluate to integers. For example,

&DO A
&DO B
&DO C

= 1 &TO 10
= 3 &TO %TOTAL%
= 5 &TO [LENGTH %A%]

If you specify a &BY clause, increment must evaluate to an integer. If you do not specify a &BY
clause, increment defaults to 1. Negative increments, start-values or stop-values may be used; for
example, &DO I := 10 &TO -10 &BY-1.

Execution of Counted Loops
When a counted loop executes, CPL sets index-var to start-value. It then tests start-value to see if
it is less than or equal to stop-value. If it is, CPL executes the loop. When control returns to the
top of the loop, the value of index-var is incremented by increment, and retested. When the value
of index-var exceeds stop-value, the loop operation ends; execution passes to the statement that
follows the loop's concluding &END statement.
The flow chart for the counted &DO loop is shown in Figure 9-4. As it shows, counted &DO
loops are zero-trip loops; that is, if the initial value of index-var is out of range, the loop is not
executed.
The following example demonstrates a counted loop:

&DO I := 1 &TO 3
F77 MODULE%I% -64V -XREF

&END

This loop executes three times, compiling the programs MODULE 1, MODULE2, and
MODULE3.

Omitted &BYand &TO Clauses
The &BY clause specifies the value that CPL uses to increment index-var each time through the
loop. The &TO clause value specifies the limit value for index-var. If you omit the &BY clause
in a counted loop, incrementing defaults to &BY 1. If you omit the &TO clause, index-var has no
stop-value, and thus can increment an infinite number of times. (For example, the directive
&DO I := 1 &BY 1 produces this type of infinite loop.) Do not omit the &TO clause in a counted
loop without providing some other test for loop termination.

9-6

Loops

c Enter Loop

is
Value of

Index-var Less
Than Stop-value,

Set Index-var
to Initial/Next

Value

Execute Loop

Figure 9-4
Action of Counted &DO Loop

9-7

CPL User's Guide

You can use the following to test for loop termination:
• A &WHILE clause
• An &UNTIL clause
• A &RETURN directive inside the loop
• A &GOTO from some point inside the loop to a point outside the loop

A counted &DO loop with neither a &TO nor a &BY clause executes once and once only. The
statement

&DOI := 5

initiates such a loop. More efficient code to do the same thing is

&DO
&SET_VAR I := 5

SEND

&DO &WHILE Loops
The format of the &DO & WHILE directive is

&DO &WHILE test

test can be any expression that evaluates to TRUE or FALSE. A TRUE result allows the loop to
execute. A FALSE result prevents execution of the loop.
Some examples of &DO &WHILE statements are

&DO &WHILE [LENGTH %STRING%] > 0
&DO &WHILE %B% > 5 & A [NULL %A%]

&DO &WHILE loops, like counted loops, are zero-trip loops; that is, they are tested for
completion at the top of the loop, and do not execute at all if the first test shows that the loop has
completed.
Since &DO & WHILE loops are tested at the top of the loop, they require that test have some
value assigned to it when you execute the &DO statement. In the examples above, you must
assign values to %A%, %B%, and %STRING% before the &DO statement is executed.

9-8

Loops

The following example of a &DO &WHILE loop edits a file that contains a list of names, adding
new names to the end of the file. The loop executes as long as you type a name after each prompt.
It ends when you type in a carriage return, and thus set LINE to the null string.

&DATA ED NAME_LIST
BOTTOM /* go to bottom of file

/* get first name
&S LINE := [RESPONSE 'Please enter name to be added']
&DO &WHILE * [NULL %LINE%]

INSERT %LINE% /* insert new line in file
/* get next name

&S LINE := [RESPONSE 'Please enter name to be added']
SEND /* end loop

FILE /* file amended list of names
&END /* end fidata group

&DO & UNTIL Loops
The format of the &DO &UNTIL loop is

&DO &UNTIL test

For example,

&DO &UNTIL %A% > 50
&DO &UNTIL [LENGTH %STRING%] = 0

test is any expression that evaluates to TRUE or FALSE. The loop executes as long as test
remains FALSE.
&DO &UNTTL loops test at the bottom of the loop. Hence, they are one-trip loops; they always
execute at least one time. The following example uses a simple &DO &UNTIL loop:

&ARGS STRING
&DO &UNTIL [NULL %STRING%]

/♦Isolate first letter in string
&SETJVAR LETTER := [SUBSTR %STRING% 1 1]
TYPE %LETTER%
/* Remove letter from string
&SETJVAR STRING := [SUBSTR %STRING% 2]
SEND /* End loop

&RETURN

This loop goes through a string letter by letter, removing and displaying one character on each
pass. When the last character has been removed, the string becomes a null string, and the loop is
complete. (For more information on the SUBSTR function, see Chapter 12.)

9-9

CPL User's Guide

Loops That Combine Counting,
&WHILE, and &UNTIL Tests
A &DO loop statement can contain more than one test. A counted loop can include a &WHILE
test, an &UNTTL test, or both. A &DO &WHILE loop can include an &UNTIL test. Three
examples of these combination loops are

&DO DAY := 1 6TO 31 &UNTIL [NULL %RECORDS%]

&DO I := 50 &TO 1 &BY -5 &WHILE %J% > 3

&DO &WHILE %A% > 100 &UNTIL %B% > 50

Each of these loops executes until one of its tests signals completion. See Figure 9-1 for the test
points they can contain.

&DO &REPEAT Loops
The format of the &DO &REPEAT loop is

&DO index-var := start-value
&REPEAT expression {&WHILE test} (&UNTIL test}

A &DO &REPEAT loop is a counted loop. The loop counter (index-var) is incremented by the
&REPEAT expression. The &REPEAT clause permits you to increment the loop counter based
upon an expression calculated each time through the loop.
The index-var counter variable can be any valid variable name, start-value, which initializes the
counter, may be any string or arithmetic expression. The &REPEAT expression can be any string
or arithmetic expression that indicates how the value index-var is to be modified on each pass
through the loop. For example,

&DO I := 5 &REPEAT %I% * 5 &UNTIL %I% > 500

This example sets I to 5 on the first trip through the loop, then multiplies I by 5 on succeeding
trips. This loop executes four times, with I set to 5, 25, 125, and 625. At the bottom of the fourth
trip, the test 625 > 500 is true; so the loop terminates at the end of that iteration.

Note
A &REPEAT loop without a &WHILE or &UNTIL clause is an
infinite loop; that is, it has no test for termination. If you write a
&REPEAT loop without a &WHILE or &UNTIL clause, make sure
you include some &RETURN or &GOTO directive inside the loop so
that it can terminate.

9-10

Loops

r

&DO &LIST Loops
The format of the &DO &LIST loop is

&DO index-var &LIST list-of-items {&WHILE test} (&UNTIL test}

A &DO &LIST loop is a counted loop that executes as many times as the number of items in the
&LIST list-of-items. Each time the loop executes, it sets index-var to the next item on the list-of-
items. The loop executes until the list of items is exhausted.
index-var can be any valid variable name.

list-of-items is a list of items separated by blanks. Each item in the list can be a character string, a
variable reference, or a function call. A variable reference or function call may itself evaluate to a
list of items. The maximum length of list-of-items is 1024 characters. This maximum applies to
both the list as written, and the evaluated value of the list.
A &DO &LIST loop is a zero-trip loop; that is, if the list-of-items contains no items, the loop is
not executed. A null character (") or a variable reference with a null value does count as an item
in the list-of-items and causes the loop to execute. When the loop is executed, each iteration of the
loop sets index-var to the next item on the list. When the list is exhausted, the loop terminates. For
example,

&DO I &LIST alpha beta gamma

This statement executes a loop three times, with I equal to alpha on the first iteration, beta on the
second iteration, and gamma on the third iteration.
The action of the &DO LIST loop is diagrammed in Figure 9-5.

Examples of the &DO &LIST Loop
The first example is a basic &DO &LIST loop:

&DO I &LIST 50 0 -50

This loop executes three times, with I set to 50 on the first iteration, 0 on the second, and -50 on
the third.
The second example uses a single variable to specify multiple listed items:

&DO WORD &LIST [UNQUOTE %line_of_type%]

This statement evaluates the variable line_of_type, and assigns each blank-separated word or
number found in that line to the index variable, WORD. For instance, if the value of line_of_type
is THE QUICK BROWN FOX', then the loop executes four times, with WORD set to THE,
QUICK, BROWN, and FOX. Because a quoted string is a single item, the value of line_of_type
must be unquoted to be counted as four listed items. If line_of_type remains quoted, 'THE
QUICK BROWN FOX', causes the loop to execute once, with WORD set to 'THE QUICK
BROWN FOX'.

9-11

CPL User's Guide

c Exit Loop

Enter Loop

Yes

Set Index-var
to Next Item

in List

Execute Loop

Figure 9-5
Action of &DO &LIST Loop (&WHILE and/or &UNTIL tests may be added)

9-12

Loops

The third example uses the &DO &LIST loop with the WILD function:

&DO I &LIST [WILD @.CBL]
CBL %I%

SEND

This loop compiles all COBOL 74 files in the current directory. However, if the WILD function
returns a list longer than 1024 characters, an error occurs that halts the CPL program. If you think
this may happen in your program, use the &ITEMS loop, described below, instead of the &LIST
loop.
The final example uses nested &DO &LIST loops:

& D O D E P T & L I S T [W I L D 8 8 - D I R S] / * B e g i n d e p t - l o o p
A SALES>%DEPT%
&DO REPORT &LIST [WILD 8_REPORT -FILES] /* Begin report-loop

SPOOL %REPORT%
S E N D / * E n d r e p o r t - l o o p

& E N D / * E n d d e p t - l o o p
A S A L E S / * R e - a t t a c h t o S A L E S d i r e c t o r y

This example spools every report in every subdirectory belonging to the directory SALES. The
outer loop attaches to each subdirectory in turn. The inner loop finds the files in that subdirectory
that end in _REPORT, and spools them.

&DO &ITEMS Loops
The &DO &ITEMS loop is similar to the &DO &LIST loop in that it processes a sequence of
items, and terminates when it has exhausted the items. It differs from &DO &LIST in that it does
not have a list of items to read. Instead, the word &ITEMS is followed by an expression that is
evaluated at each iteration. Usually, expression is the WILD function with the -SINGLE option,
returning one filename per iteration.
The format of the &DO &ITEMS loop is

&DO index-var &ITEMS expression {&WHILE test} {UNTIL test}

It is equivalent to "&DO I := expression &REPEAT expression &WHILE A [NULL %I%]". The
action of the &DO &ITEMS loop is shown in Figure 9-6.
The following example demonstrates the &DO &ITEMS loop:

& S U N I T : = 0 / * T h i s s t e p i s e s s e n t i a l
&DO I &ITEMS [WILD 8.CBL 8.F77 -SINGLE UNIT]

&S COMPILE := [AFTER %I% .]
%COMPILE% %I%

SEND

9-13

CPL User's Guide

c Exit Loop

Enter Loop

Evaluate
Expression
Following
&ITEMS

Assign Value
of Expression
to Index-var

Execute Loop

Figure 9-6
Action of &DO &ITEMS Loop (&WHILE and/or &UNTIL tests may be added)

9-14

Loops

This example compiles all COBOL 74 and FORTRAN 77 files in the user's current directory, no
matter how many of them there are. It works as follows:

1. The directive &S UNIT := 0 initializes the variable unit with a value of zero. (Any
variable name may be used; unit is only a handy mnemonic.)

2. The WILD function sees that unit is set to zero. It therefore opens the user's current
directory on some available unit, then sets unit to the number of the unit that it is
using. (It uses the decimal number of the file unit.)

3. Because the WILD function includes the -SINGLE option, the WILD function finds
the first matching file, and returns that filename as its value.

4. The &DO processor assigns the value returned by the WILD function to /.
5. The loop executes.
6. When the loop returns to the &DO statement, the WILD function is re-invoked.
7. The WILD function reads the open unit number from unit, goes to that unit, and

selects the next matching file.
8. The loop executes again.
9. When the WILD function finds no matching file, it returns a string of length zero and

closes the file unit it was using. CPL resets / to the null string, and the loop terminates
immediately.

This loop is equivalent to the following &REPEAT loop:

&S UNIT := 0
&DO I := [WILD d.CBL @.F77 -SINGLE UNIT] ~

&REPEAT [WILD @.CBL @.F77 -SINGLE UNIT] ~
&WHILE A [NULL %I%]

&S COMPILE := [AFTER %I% .]
%COMPILE% %I%
&END

A &DO &ITEMS Loop to Read and Write Files
The &DO &ITEMS loop can also be used with CPL's file I/O functions, as shown in the
following example. (For information on these functions, see Chapter 12.)

/* Open file ALPHA for reading and writing
&S UNIT := [OPEN.FILE ALPHA STATUS -MODE R]

/* Read each line in turn
&DO I &ITEMS [READ_FILE %UNIT% STATUS]

&END
CLOSE ALPHA

9-15

CPL User's Guide

This example performs the following steps:

1. Opens the file ALPHA for reading on some available unit, returning the number of the
unit (in decimal) as the value of the variable, %UNIT%.

2. Reads one line from the file each time the &DO &ITEMS statement is encountered.
3. Terminates when it reaches the end of the file.

(Note that in this case, the file is not closed automatically. The user must close it after the loop is
completed.)

9-16

10
Debugging and Error Handling

This chapter describes CPL directives that you can include in your program to deal with errors.
CPL programs may encounter two types of errors:

• A CPL directive may be written incorrectly. For example, the word &THEN may have
been omitted from an &IF statement.

• A PRIMOS command executed by the CPL program may produce a runtime error. For
example, a command may try to open a file that does not exist.

You can locate errors in your CPL program by including the &DEBUG directive at the beginning
of the program. Three &DEBUG options are useful for debugging: no-execute mode, echoing,
and variable watching. These &DEBUG options are explained in the first half of this chapter.
You can detect and respond to runtime errors by including the &SEVERITY directive in your
CPL program. &SEVERITY has several options that detect errors of differing severity, issue
messages, halt execution, and invoke user-written error handling routines. The &SEVERITY
directive is described in the second half of this chapter. More advanced methods of runtime error
handling are described in Chapter 15.

Debugging CPL Programs: The &DEBUG Directive
All debugging operations are enabled and disabled using the &DEBUG directive. Its format is

&DEBUG {options}

Available options are shown in Table 10-1, and are explained below.
If no &DEBUG directive is given, debugging is disabled. (This is equivalent to &DEBUG
&OFF.)
If &DEBUG is given without options, the result is equivalent to

&DEBUG &NO_EXECUTE &ECHO ALL

&DEBUG directives may appear anywhere in a CPL program. A &DEBUG directive takes effect
when it is read, superseding any previous &DEBUG directives.

10-1

CPL User's Guide

If a CPL program executes another program or calls a subroutine, the first program's debugging
options are suspended while the called program or routine executes. The debugging options are
re-enabled when execution of the first program resumes.

Table 10-1
&DEBUG Options

Option Action
&OFF

&NO EXECUTE

&EXECUTE

fALL&echo j com
Ldir

TALL1
&NO_ECHO -l COM y

[dir J
&WATCH {varl var2 ... var!6}

&NO_WATCH {varl var2 ... varl6}

Turns off all debugging options. Initially,
all options are off.
Suppresses execution of PRIMOS com
mands, but interprets CPL directives.
Abbreviated &NEX.
Enables execution of PRIMOS commands.
Abbreviated &EX.
If ALL is specified, echoes PRIMOS com
mands and CPL directives. If COM is
specified, echoes only PRIMOS commands.
If DIR is specified, echoes CPL directives.
Default is ALL.
ALL cancels all echoing. COM cancels
echoing of PRIMOS commands. DIR can
cels echoing of CPL directives. Default is
ALL.
Adds the specified variables to the
watchlist. When the value of a watched
variable is changed using the &SET_VAR
directive (not the SETJVAR command),
CPL reports this fact and the new value of
the variable. At most 16 variables can be
on the watchlist. If no variables are listed,
&WATCH watches all variables.
Removes the specified variables from the
watchlist. If no variables arc specified,
watching is turned off completely.

The &NO_EXECUTE and &EXECUTE Options
This pair of options determines whether or not commands are executed when the CPL program is
run. Specifying &DEBUG &NO_EXECUTE (or simply &DEBUG), allows you to run through,
or "rehearse", a CPL program. When you run a CPL program that begins with &DEBUG
&NO_EXECUTE, the CPL interpreter reads the CPL file and interprets its directives as usual.
However, it does not pass any commands to PRIMOS. If a CPL error is found, the usual message
is sent and execution is terminated.

10-2

Debugging and Error Handling

r

The &NO_EXECUTE option thus lets you run through a program as many times as necessary to
get rid of syntax errors before performing any of the commands the file contains. It is especially
useful for CPL programs that

• Take a long time to execute
• Edit or update sensitive files
• Use peripheral equipment, such as magnetic tapes
• Contain any sequence of commands that should not be interrupted

&DEBUG &EXECUTE allows the execution of PRIMOS commands. You can place pairs of
&DEBUG &EXECUTE and &DEBUG &NO_EXECUTE directives in your CPL program to
prevent the execution of blocks of PRIMOS commands.
A &DEBUG directive with no options prevents the execution of PRIMOS commands. A
&DEBUG directive with any options (for example, &DEBUG &ECHO) permits the execution of
PRIMOS commands unless you specify &NO_EXECUTE.

The &ECHO and &NO_ECHO Options
The &ECHO and &NO_ECHO options control the echoing of commands and directives. Echoing
displays each line of the CPL program on the terminal screen as it is encountered in program
execution. You can echo all CPL program lines, CPL directives only, or PRIMOS commands
only. If you specify &DEBUG with no options, it echos all CPL lines; if the &DEBUG directive
is followed by options, you must specify &ECHO to echo the lines of the CPL program.
If &ECHO DIR is given, CPL directives are echoed on the terminal as they are read. (A loop
directive echoes each time the loop is executed.) For example, this CPL program (named
EX.CPL)

&DEBUG &ECHO DIR
&DO I := 1 &TO 3

TYPE %I%
&END

produces this terminal session when run:

OK, R EX.CPL
&DO I := 1 &TO 3
1
SEND
&DO I := 1 &TO 3
2
SEND
&DO I := 1 &TO 3
3
SEND
OK,

10-3

CPL User's Guide

If &ECHO COM is given, PRIMOS commands are echoed. If this sample program contains the
statement &DEBUG &ECHO COM, the terminal session looks like this:

OK, R EX.CPL
TYPE 1

1
TYPE 2

2
TYPE 3

3
OK,

The &ECHO DIR and &ECHO COM options are additive. That is, if you specify &ECHO DIR,
and then specify &ECHO COM later in the program, both directives and commands are echoed
for the rest of the program.
If &ECHO ALL (or simply &ECHO) is given, both commands and directives are echoed. If this
sample program contains the statement DEBUG &ECHO, the terminal session looks like this:

OK, R EX.CPL
&DO I := 1 &TO 3

TYPE 1
1
&END
&DO I := 1 &TO 3

TYPE 2
2
SEND
&DO I := 1 &TO 3

TYPE 3
3
SEND
OK,

&NO_ECHO turns off echoing. You can specify &NO_ECHO ALL, &NO_ECHO COM or
&NO_ECHO DIR. If a program begins with the directive &DEBUG &ECHO ALL, and later
contains the directive &DEBUG &NO_ECHO COM, then echoing of commands is halted, but
echoing of directives continues. &NO_ECHO is equivalent to &NO_ECHO ALL.

The &WATCH and &NO_WATCH Options
The & WATCH option lets you trace the values of local and/or global variables. &DEBUG
&WATCH displays the value of a variable each time the variable is set by a &SET_VAR
directive. (This includes changes made by the CPL interpreter itself, such as those that occur by
setting the index variable of a loop or recording a new severity value. They do not include values
set by the SET_VAR command or the GV$SET routine.)

10-4

Debugging and Error Handling

&WATCH can be used in two ways. If you specify &DEBUG &WATCH, the values of all
variables are displayed. If you specify &DEBUG &WATCH followed by a list of variables, only
the values of the listed variables are displayed. You can list as many as 16 variables. Enclose the
list of variables in parentheses; you must separate variables from the parentheses and from each
other by blank spaces.
For example, the program

&DEBUG &WATCH (I J)
&DO I := 1 &TO 5

&S J := %I% * %I%
SEND

produces the following result:

OK, R EX2.CPL
Variable "I" set to "1" at line 2.
Variable "J" set to "1" at line 3.
Variable "I" set to "2" at line 4.
Variable "J" set to "4" at line 3.
Variable "I" set to "3" at line 4.
Variable "J" set to "9" at line 3.
Variable "I" set to "4" at line 4.
Variable "J" set to "16" at line 3.
Variable "I" set to "5" at line 4.
Variable "J" set to "25" at line 3.
Variable "I" set to "6" at line 4.
OK,

Note that this display shows the loop's index as set to its first value at the top of the loop, then
incremented at the &END statement each time thereafter.
&WATCH variables are additive. That is, if you specify &WATCH (A B), and then specify
& WATCH (CD) later in the program, the variables A, B, C, and D are displayed for the rest of
the program.
To cease displaying a variable, use the &NO_WATCH option. &DEBUG &NO_WATCH by
itself halts the display of all variables. &DEBUG &NO_WATCH with a variable list halts the
display of the listed variables only.

10-5

CPL User's Guide

Error Handling: The &SEVERITY Directive
Whenever a PRIMOS command is executed, it produces an error code (known as a severity
code). Possible severity codes are

Code
0
Positive integer
Negative integer

Meaning
No error
Error
Warning

CPL's default response to these severity codes is to ignore codes of 0 or less, but to halt execution
of the CPL program if a severity code of 1 or greater is received.

The &SEVERITY directive allows CPL to perform error checking automatically after the
execution of each command. Therefore, if you wish to alter CPL's default error handling during
part or all of any CPL program, you may use a &SEVERITY directive to specify the action you
want taken. Possible &SEVERITY directives are

Directive

&SEVERITY

&SEVERITY &WARNING &IGNORE

&SEVERITY &ERROR &IGNORE

&SEVERITY &WARNING &FAIL

&SEVERITY &ERROR &FAIL

&SEVERITY &ERROR &ROUTINE
routine label
&SEVERITY &WARNING &ROUTINE
routine label

Meaning

Ignore warnings, halt execution for
errors (default).

Ignore warnings, halt execution for
errors (default).

Ignore errors and warnings, continue
execution.
Halt execution if any warning or error is
received.

Ignore warnings, halt execution for
errors (default).
Invoke the specified routine if an error
occurs. Ignore warnings.

Invoke the specified routine if any warn
ing or error is received.

&SEVERITY directives may be placed anywhere in a CPL program. They become effective
when execution of the program reaches the line in which they occur, and they remain effective
until the program either

• Terminates
• Encounters a new &SEVERITY directive

If one CPL program invokes another (or if it invokes one of its routines), then the effectiveness
of the &SEVERITY directive is suspended while the second program (or routine) executes. If the

10-6

Debugging and Error Handling

invoked program or routine defines its own error handling, that takes effect. If the program
defines no error handling, CPL's default error handling takes effect from the time the new
program or routine is invoked until it returns to its caller (that is, to the first CPL program).
A possible sequence of error handling is shown in Figure 10-1. Chapter 15 contains a further
explanation of CPL's error handling, including

• How to define your own error conditions
• How to write error-handling routines
• How to define your own condition handling
• How to make a &RETURN directive pass a severity code to its caller
• How to use the &STOP directive to halt a routine and its calling program

simultaneously

10-7

CPL User's Guide

0)

(2)
(5)

(6)

(7)

AA.CPL

&SEVERITY &WARNING &FAIL

RESUME BB.CPL1

&SEVERITY &ERROR &FAIL

&RETURN

BB.CPL

(3)
& SEVERITY fi ERROR & IGNORE

& RE TURN

(4)

Action

1. AA.CPL sets error handling to
&SEVERITY &WARNING &FAIL.

2. AA.CPL invokes BB.CPL.

3. BB.CPL sets error handling to
&SEVERITY &ERROR &IGNORE.

4. BB.CPL returns to AA.CPL.

5. Execution of AA.CPL continues.

6. Execution of AA.CPL encounters
&SEVERITY &ERROR &FAIL
directive.

7. AA.CPL returns.

Error Handling

1. Program will halt if it gets a warning
message.

2. AA.CPL's error handling is suspended.

3. No error codes can halt BB.CPL's
execution. (PRIMOS condition codes,
such as pointer faults or access
violations, can still halt BB.CPL's
execution.)

4. BB.CPL's error handling is terminated.

5. Error handling is &SEVERITY
&WARNING &FAIL again, as AA.CPL
originally set it.

6. AA.CPL's error handling changes to
system default error handling (that is,
halt for errors, ignore warnings).

7. AA.CPL's error handling is terminated.
(Error handling is determined by
AA.CPL's caller.)

Figure 10-1
Scope of &SEVERITY Directive

10-8

Part III
Full CPL

11
Expression Evaluation

This chapter provides a detailed explanation of how CPL evaluates expressions. It describes
• How variables are defined and evaluated
• How function calls are used and evaluated
• How quoted strings are handled in variables, in function calls, and in CPL generally
• How to suppress and reactivate expression evaluation using the QUOTE, UNQUOTE,

and RESCAN functions
• How arithmetic expressions are evaluated, and how to use the CALC function to force

evaluation of arithmetic expressions
• How PRIMOS features such as ABBREV files and PRIMOS special characters are

evaluated, and how these features interact with evaluation of CPL expressions

Variables
A CPL variable name can be as many as 32 characters in length. It can contain letters, digits,
underscore characters Q, and dots (.). Names of local variables must start with a letter (to avoid
confusion with numbers). Names of global variables must start with a dot (.). The dollar sign ($)
is reserved for the names of predefined PRIMOS variables. Variables always take character
strings as values; the maximum length of a value is 1024 characters.
Variables are not declared in CPL. They are defined by assigning them a value for the first time.
There are two kinds of variables, local and global. Both may be assigned values using the
&ARGS directive, the &SET_VAR directive, or the SETJVAR command. For example,

& SETJVAR PL1_PR0G := RICHS>EVAL. PLl

sets the local variable PLl_PROG to the value RICHS>EVAL.PL1.
You can use the SET_VAR command to define global variables at command level. Use the
&SETJVAR directive, which is both faster and more flexible, for defining variables within a
CPL program.

11-1

CPL User's Guide

Local Variables
Local variables cannot be set outside a CPL invocation. You can only define local variables in the
CPL program in which they are used; you cannot define a local variable in a recursive invocation
of the same CPL program, nor in an invocation of another CPL program. You can, however, pass
values to local variables at runtime using the &ARGS directive. You can also use the &ARGS
directive to pass local variable values as arguments to programs called from your CPL program.

CPL suspends local variables during a call to another program (using, for example, the RESUME
command). Local variables are reactivated when the CPL program returns from the called
program. Local variables remain active during a call to a CPL routine (using the &CALL
directive). CPL deletes all local variables when the program in which they are defined finishes.

Global Variables
Global variables are distinguished from local variables by having names that start with a period.
The CPL directive

& SETJVAR .HOME := RICHS

sets the global variable .HOME to the value RICHS. Global variables are associated with a
particular user, and not with any program; they can be referenced in any CPL procedure invoked
by that user. The names and values of global variables survive the invocation of a program in
which they are used. Thus, if you run a CPL program that sets the global variable,

.A_GLOB_VAR,

you can later run another CPL program that references that variable. Furthermore, the names and
values of global variables survive logout. When you log in, any global variables that you defined
in previous sessions are still available.

Global variables survive program invocations and logouts because they are saved in a user-
defined file. This file is defined by the DEFINE_GVAR internal command (see Chapter 4). If
you intend to use global variables during a terminal session or in a CPL program, you must issue
a DEFINE_GVAR command before the first global variable reference.

You can set global variable values using the SETJVAR command, the &SETJVAR directive, and
the &ARGS directive. You can delete a global variable or a list of global variables using the
PRIMOS command DELETEJVAR. The PRIMOS command LISTJVAR lists global variables
and their values at your terminal. You can list all global variables, or list specified global
variables. These commands and directives are further described in Chapter 4.

Evaluation of Variables
A variable is referenced by enclosing its name in percent signs, as in %variable_name%. An
example of a statement referencing variables is

F77 %PATHNAME%.F77 -LIST %PATHNAME% .LIST -BIN %PATHNAME% .BIN

11-2

Expression Evaluation

r The string %PATHNAME% is replaced with the value of the variable pathname. For example, if
pathname has the value HOBBIT, then the above statement is transformed into

F77 HOBBIT.F77 -LIST HOBBIT.LIST -BIN HOBBIT.BIN

When a statement contains variable references, all references are replaced by their values before
the statement is executed. Variable evaluation is performed only once per statement. For example,
if variable VAR has the value %XXX%, then when VAR is evaluated, CPL replaces the reference
%VAR% with the value %XXX%. The value %XXX% may itself be a variable reference, but
because a CPL statement is only evaluated once, this string remains as a literal in the program and
is not evaluated as a variable reference.
Variable references inside single quotation marks are not evaluated.

Functions
Functions are procedures that return string values. These string values are substituted for the
function call in the original statement. The maximum length of a function result is 1024
characters. A function call is indicated by square brackets:

[function-name argl... argn]

where function-name is the name of the function, and argl through argn are its arguments. An
example of a function call is

PLl %PLl_PROG% -L [BEFORE %PLl_PROG% .PLl].LIST

The function BEFORE returns that part of the value of %PLl_PROG% that occurs before the
first occurrence of .PLl. In this case, the value returned by the BEFORE function is concatenated
with the adjacent string .LIST. If %PLl_PROG% has the value RICHS>EVAL.PL1, then the
statement is transformed into

PLl RICHS>EVAL.PL1 -L RICHS>EVAL.LIST

before it is executed.
CPL evaluates variable references prior to function calls. This is illustrated by the example just
given; CPL replaces the variable reference %PLl_PROG% with RICHS>EVAL.PL1 before it
evaluates the BEFORE function call.
Function evaluation is done recursively; any or all of function-name or argl...argn may
themselves contain function calls. Innermost calls are done first. There is no implementation
restriction on the depth of nesting.
Function calls inside single quotation marks are not evaluated.

11-3

CPL User's Guide

Quoted Strings
To quote a string, enclose it in single quotation marks ('). You must quote a string if

• The string contains at least one blank, semicolon or comma, but is supposed to
represent one token. For example,
'a multiple token'

• The string contains a literal quotation mark, as in 'QUOTE-IT"S-INSIDE\ Note that to
include a quotation mark in a string you must double it.

• The string contains at least one of the special characters described in Chapter 3, Rule 9,
and the literal meaning of the character is desired. Since these characters have
meanings in CPL syntax, these meanings must be suppressed by quoting the string. For
example, 'HIDE_THIS_[FUNCTION CALL]'.

When you set a variable with a quoted string, for example

SETJVAR A := 'quotes_go_in'

the quotation marks become part of the value of that variable.

Enclosing a string in quotation marks establishes the string as an indivisible unit and prevents the
evaluation of the contents of the string. Otherwise, the quotation marks that enclose the string are
frequently not apparent. For example, the PRIMOS command TYPE does not display enclosing
quotation marks. The LENGTH function does not count enclosing quotation marks when
determining the length of a string.

Expression evaluation considers a quoted string to be a literal character string, and not an integer
or a logical value. Therefore, do not use quoted strings in arithmetic expressions, logical
expressions, or relational expressions other than string comparisons. (Chapter 4 provides
examples of the use of quoted strings in expressions.)
A quoted string remains quoted until specifically unquoted using the UNQUOTE or RESCAN
function.

Concatenating Strings
If two or more variable references or function calls are placed side by side, their values are
concatenated. Thus, suppose x has the value 'ab' and v has the value 'cd'. Then

T y p i n g P r o d u c e s
% x % % y % ' a b e d '
%x% %y% 'ab' 'cd'

In the first example, the values of x and v are concatenated into a single string by removing their
respective right and left quotation marks. In the second example, the intervening blank causes the
references to be replaced without concatenation. Similar rules hold for function calls.

11-4

Expression Evaluation

Variable Arrays
CPL's ability to concatenate variables permits you to create elements of an array. To create
elements of an array, you concatenate the array name with the subscript index. For example, if the
array is named TEST_SCORES, the sixth element of the array is named TEST_SCORES6.
The following example shows how to create an array named TEST_SCORES with 100 elements,
and initialize the element values to zero:

&DO INDEX := 1 &TO 100 &BY 1
&SETJVAR TEST_SCQRES%INDEX% := 0
SEND

To retrieve the value of an array element, use the GET_VAR function:

&ARGS QUERY
TYPE Test score number %QUERY% is [GET_VAR TEST_SCORES%QUERY%]

Quoting and Unquoting Strings
CPL provides a function that unquotes strings. The UNQUOTE function has the format

[UNQUOTE string]

For example,

[UNQUOTE 'ab']
[UNQUOTE %x%]

The UNQUOTE function removes the outermost pair of quotation marks (if any) from string,
then changes every remaining pair of adjacent quotation marks to a single quotation mark.
UNQUOTE returns this unquoted version of string. Note that UNQUOTE only removes one layer
of quotation marks; therefore, a string returned by UNQUOTE may, in some cases, still be a
quoted string. The string and the value returned by UNQUOTE are shown in the following
examples:

% x % [U N Q U O T E % x %]
a b a b
' a b ' a b
' " a b " ' ' a b '
' a " b ' " a ' b '
" ' a " " b ' " ' a " b '

CPL also provides a function that quotes strings. The QUOTE function has the format

[QUOTE string-1 {string-2} ...]

11-5

CPL User's Guide

For example,

[QUOTE abe]
[QUOTE %a% %b% def]

The QUOTE function adds an outer pair of quotation marks to string. If there are multiple strings,
QUOTE treats string-1, string-2, and so on, as a single quoted string. QUOTE also automatically
doubles single quotation marks within string. CPL reads a doubled quotation mark as one literal
quotation mark character, rather than as a quotation mark used to enclose a quoted string.
For example, suppose x has the value AB'C'D, then

[QUOTE %x%]

returns

'AB"C"D'

You can use the QUOTE function to quote an already quoted string. This works for any number
of quote levels. For example, if x has the value AB'C'D,

[QUOTE [QUOTE %x%]]

the outermost QUOTE function returns the string

'"AB""C""D"'

The RESCAN Function
The RESCAN function performs an unquote operation in which a string is evaluated, unquoted,
and then evaluated again. The format of the RESCAN function is

[RESCAN string]

You can use the RESCAN function to force evaluation of string when string contains quoted
variable references and function calls. Usually, RESCAN is used when string contains both
variable references (such as %\%) and quoted variable references (such as '%x%').

RESCAN evaluates (scans) string twice. First, it evaluates any function calls or variable
references that are not in quotation marks, and substitutes the resulting values into string. It then
unquotes string. This step is identical to the operation performed by the UNQUOTE function.
Finally, RESCAN evaluates any function calls or variable references in the string that are not still
quoted.
To illustrate the use of this function, suppose a CPL program MYPROG.CPL has an argument
funcs_and_vars. The value of funcs_and_vars is a string containing variable references and
function calls. For example, the value of funcs_and_vars might be [LENGTH %holycow%]. If
we try invoking MYPROG.CPL by

R MYPROG.CPL [LENGTH %holycow%]
11-6

Expression Evaluation

the CPL interpreter evaluates the [LENGTH %holycow%] argument value before passing it to the
&ARGS directive in the program. This is not what was intended. Instead, we must type

R MYPROG.CPL ' [LENGTH %holycow%] '

The quotation marks suppress evaluation so that the string '[LENGTH %holycow%]' is assigned
to funcs_and_yars.
Later, however, when MYPROG.CPL wants to evaluate the LENGTH function call in
funcs_and_vars, using just %funcs_and_vars% would give the value with its quotation marks,
again suppressing evaluation of the function. The RESCAN function must be used to strip the
quotation marks from '[LENGTH %holycow%]', and then evaluate the %holycow% variable
reference and the LENGTH function call. Thus, MYPROG.CPL might contain the statement:

&IF [RESCAN %funcs_and_vars%] > 100 &THEN &RETURN

In this example, CPL evaluates %funcs_and_vars% and returns '[LENGTH %holycow%]'.
RESCAN unquotes '[LENGTH %holycow%]' and then evaluates [LENGTH %holycow%] to
return an integer value for use by the &IF directive expression.

Using Abbreviations
PRIMOS provides an abbreviations facility that you can use to create your own short
abbreviations for long sequences of PRIMOS commands. These abbreviations and their
expansions are stored in an ABBREV file. The Prime User's Guide describes how to create
abbreviations. This section describes how to use your abbreviations within a CPL program.

The &EXPAND Directive
The &EXPAND directive enables or disables the expansion of abbreviations from your ABBREV
file within a CPL program. Its format is

&EXPAND {<*.}

&EXPAND ON causes the CPL interpreter to pass each command in the CPL program to the
abbreviation preprocessor for abbreviation expansion. After specifying &EXPAND ON, your
CPL program can invoke the abbreviations in your ABBREV file as if they were PRIMOS
commands.
The CPL interpreter passes each command to the abbreviation preprocessor for expansion (if
necessary) before it performs variable evaluation, function evaluation, and execution. Therefore,

11-7

CPL User's Guide

&EXPAND does not expand user-defined abbreviations that include variables or functions. For
example, the following CPL program executes properly:

&ARGS SUBDIR
&S LISTEM := LD
&EXPAND ON
DOWN %SUBDIR%
%LISTEM%

The above example executes the user abbreviation DOWN and the PRIMOS command LD. The
following example, however, does not execute properly:

&ARGS SUBDIR
&S LISTEM := LD
&S DESCEND := DOWN
&EXPAND ON
%DESCEND% %MYSUB%
%LISTEM%

In this example, the user abbreviation DOWN cannot be located because the CPL interpreter
checks the abbreviation preprocessor before evaluating the %DESCEND% variable reference.
With the exception of &THEN and &ELSE clauses, the CPL interpreter cannot execute user
abbreviations found within CPL directives (such as &DATA groups). This is because CPL
directives are not passed to the abbreviation preprocessor. Use the command function [ABBREV
-EXPAND text] to overcome these limitations.
In order for expansion to work, the PRIMOS command

ABBREV pathname -ON

must be given either at command level or within the CPL program before any abbreviations are
used. This command activates the abbreviation file, pathname is the pathname of the user's
abbreviation file. In many cases, this command is issued as part of a user's login procedure.
An &EXPAND directive takes effect when it is encountered. It is effective only for the procedure
that invokes it; it does not carry over into programs or routines invoked by that procedure.
&EXPAND OFF disables abbreviation expansion. This is the default setting.

Evaluation of Expressions
A PRIMOS command that you issue at the terminal is evaluated before it is executed. Similarly,
the CPL interpreter evaluates expressions in a CPL program before executing CPL directives and
commands.

11-8

Expression Evaluation

Evaluation at PRIMOS Command Level
A PRIMOS command that you issue at command level can contain function calls and references
to global variables. When variables and functions are used at command level, the command
processor evaluates these variable references and function calls.
Variable references are evaluated first. For example, suppose the variable .SRC has the value
MYDIR and the variable .FILE has the value MYPROG.F77. If you type the following line at
your terminal

F77 %.SRC%>%.FILE% -L [BEFORE %.FILE% Fll].LIST -B NO

the command processor first evaluates the variable references, creating the following line:

F77 MYDIR>MYPROG.F77 -L [BEFORE MYPROG.F77 F77].LIST -B NO

Functions calls are evaluated second. Thus, the command processor converts the above line to

F77 MYDIR>MYPROG.F77 -L MYPROG.LIST -B NO

and then executes the command. This completes variable and function evaluation at command
level.
If abbreviation processing has been enabled by the &EXPAND ON directive, the command line
is passed to the abbreviation preprocessor for evaluation before variables and functions are
evaluated.

Evaluation Within CPL: Arithmetic Expressions
When variables and functions are used inside a CPL program, the CPL interpreter evaluates the
variable references and function calls. Evaluation is done by the CPL interpreter (rather than by
the command processor) because these expressions must be evaluated in both CPL directives and
PRIMOS commands.

In CPL Directives: As in interactive evaluation, CPL first evaluates variable references, then
evaluates function calls. However, evaluating CPL directives requires a third step, an implicit call
on the CALC function. (Chapter 12 describes CALC; briefly, this function calculates the values
of arithmetic and Boolean expressions.) CPL calls CALC for any expression in a CPL directive.
If the CALC function can evaluate the expression, it returns the resulting integer or Boolean
value. If the CALC function cannot evaluate the expression, it returns the original string.
Expressions evaluated by CALC must not be quoted and all operators must be delimited by
blanks. Thus, instead of typing

&IF [CALC %I% > 5] &THEN &RETURN

you can type

&IF %I% > 5 &THEN &RETURN

11-9

CPL User's Guide

The implicit call to CALC is done last, after variables and functions have been evaluated.
Therefore, to evaluate an expression within a function call, you must issue an explicit call to
CALC. For example, suppose A has the value 5 and B has the value 2 in the following example:

&IF %I% = [MOD [CALC %A% * %B%] %MDDULUS%] &THEN &RETURN

The innermost nested function is evaluated first. The explicit call to CALC returns the value 10,
which is then used as the first argument of the MOD function. Omitting the call to CALC causes
the string '5 * 2' to be taken as the first argument of the MOD function. Since the string '5 * 2' is
not an integer, the MOD function returns an error. (The MOD function does not understand that *
means multiplication).

In PRIMOS Commands: All uses of arithmetic operators in PRIMOS commands must be
inside an explicit CALC invocation. This is true both for PRIMOS commands issued from the
command line and PRIMOS commands issued within a CPL program. For example, the PRIMOS
command

SPOOL -CANCEL 5+1

treats 5, +, and 1 as three separate options. The PRIMOS command

SPOOL -CANCEL [CALC 5+1]

evaluates the arithmetic expression and returns 6 as an option of the SPOOL command.

Using PRIMOS Special Characters
CPL supports PRIMOS special characters. For example, the PRIMOS command separator
character is the semicolon (;). You can use semicolons to separate multiple PRIMOS commands
placed on a single CPL program line.

Syntax Suppression
The tilde is both the CPL line continuation character and the PRIMOS syntax suppression
character. The tilde appears at the end of a line when it is used as the line continuation character:

This sentence is to be continued ~
on the next line.

The tilde appears at the beginning of a line when it is used as the PRIMOS syntax suppression
character:

~ TYPE Evaluation of this: [LENGTH %STUFF% + 5]; is suppressed.

11-10

Expression Evaluation

The PRIMOS syntax suppression character is evaluated before CPL special characters. This
means that a tilde at the beginning of a line suppresses both PRIMOS special characters (such as
semicolons), the evaluation of arithmetic expressions, function calls and variable references, and
the use of the CPL line continuation character. A tilde at the beginning of a line does not suppress
the comment indicator (/*), unless the comment is within a &DATA group.

Iteration
Parentheses are used as the PRIMOS iteration character. For example,

TYPE This is (John Mary Fred Kathy) '3 slice of the pie.

Executing this command displays the sentence four times, as follows:

This is John's slice of the pie.
This is Mary's slice of the pie.
This is Fred's slice of the pie.
This is Kathy's slice of the pie.

Iteration is performed after evaluation of variable references and functions. Therefore, the
expression

TYPE This is (%name% [LENGTH %name%]).

prints out as

This is Kathy.
This is 5.

To suppress iteration but permit CPL evaluation, use the UNQUOTE function and the PRIMOS
syntax suppression character as follows:

[UNQUOTE '~'] TYPE There are two choices (%go% and CANCEL).

The above example evaluates the variable reference, then unquotes the PRIMOS syntax
suppression character, which suppresses the iteration indicated by the parentheses. This displays
the following single line:

There are two choices (PROCEED and CANCEL).

PRIMOS special characters are further described in the PRIMOS Commands Reference Guide.

11-11

12
Functions

This chapter describes CPL functions that you can call as part of any CPL statement. These
functions perform specific operations, then return a value that replaces the function call in the
CPL statement. For example, the LENGTH function returns the length of a string; therefore, 3 +
[LENGTH fred] evaluates to 3 + 4.
This chapter divides the CPL function calls into four groups:

• Arithmetic functions that perform calculations or conversions of integers. The CALC
function also performs comparisons of logical (Boolean) expressions.

• String functions that perform operations on a string specified within the function.
• File system functions that access files and directories on your system, including your

global variable file.
• Operating system functions that access other PRIMOS facilities, such as the system

clock, the ABBREVs facility, and the user terminal.

Note
Functions are listed alphabetically within each of these four groups.

Some functions quote their results and others do not. If the result of a function is most likely to
be used as a single token, but contains a semicolon, comma, blank, or quotation mark, or if the
result is an arithmetic or logical operator, the function quotes its result. If the result is most likely
to be used as a list of multiple items, the result is not quoted. Automatic quoting is done only if
the result contains one of the delimiters mentioned, or if it consists of an operator. Thus, the
AFTER function quotes its result (when necessary), because the user most likely wants to treat it
as one syntactic token. The WILD function, on the other hand, does not quote its result, because
the user most likely wants to use the result as a blank-separated list of names rather than as a
single string with embedded blanks. Functions that always return one token, such as LENGTH, do
not quote their results.

12-1

CPL User's Guide

Arithmetic Functions
▶ [CALC expression]
CALC evaluates arithmetic expressions and returns an integer value. CALC evaluates logical
(Boolean) expressions and returns the value TRUE or FALSE.
An expression can contain the logical operators & (and), I (or), and A (not); the arithmetic
operators +, -, *, /, unary +, and unary -; and the relational operators =, <, >, <=, >=, and A=. The
order of precedence is

Highest: A unary + unary -
/ *
+ -
= A= < > <= >=
&

Lowest: I

Parentheses may be used to alter the assigned precedence in the usual way. Five levels of nesting
are allowed. Unparenthesized expressions containing operators of equal precedence are evaluated
from left to right.

Notes
All operators that are to be evaluated by CALC must be delimited by
blanks. This restriction resolves the ambiguity that can arise from the
fact that *, <, and > are also valid pathname characters.
If you give CALC an expression containing more operators than it can
handle, it displays the error message, Operator stack overflow.
If you receive this message, rewrite the calculation to break it down into
simpler expressions.

Logical and relational operators return Boolean values. The strings TRUE, true, T, and t all
represent Boolean TRUE, while FALSE, false, F, and f represent Boolean FALSE.
Arithmetic operators return a character string representation of the numeric result. Arithmetic
operators apply only to integer values; CPL has no floating point arithmetic.
All the arithmetic operators have the usual definition, except for /, which returns only the
truncated integer part of any non-integer result. For example, [CALC 15/7] returns 2.
Attempting to divide a number by a larger number or by zero returns zero; it does not indicate an
error.
Arithmetic, logical, and relational operators have some restrictions on the kind of operands they
accept:

• Arithmetic operators must have operands that convert to integers. Strings that convert
to integers must contain only digits, the plus and minus signs, and leading and trailing
blanks. An integer value must be in the range -231 + 1 to 231 - 1. An arithmetic
expression returns an integer value.

12-2

Functions

r

• Logical operators must have operands that are Boolean. Acceptable operands are T,
TRUE, F, and FALSE (uppercase or lowercase). The value returned by CALC is
TRUE if the logical operation's result is true, and FALSE otherwise.

• Relational operators accept either numeric or non-numeric operands. If a relational
operator is given a non-numeric operand, CALC does a string comparison. If both
operands are either numeric or Boolean, CALC does an arithmetic comparison.
Boolean TRUE is interpreted as 1 and FALSE as 0. A relational expression returns
TRUE or FALSE.

For example, suppose tvar and fvar are variables whose values are TRUE and FALSE,
respectively, and four, five, and six are variables with the values 4, 5, and 6. Then

%four% + %five%
%six% * (%four% - %five%)
%tvar% & %fvar%
A (%four% < %five%)
%tvar% | (%four% < %five%)
%fvar% < %tvar%

are all valid expressions. However,

%tvar% | (%four% + %five%)

is not valid, because %four% + %five% is not a Boolean expression.

▶ [HEX hex-string]
Converts a hexadecimal number to decimal, hex-string is an expression that must evaluate to a
valid hexadecimal number. This function returns a string representation of the decimal equivalent
of hex-string. For example, [HEX A] returns 10. Legal values for hex-string are 0-9, A-F, and a-f.

▶ [MOD decimal-string decimal-string]
Returns the modulus (remainder) from a division operation. Both arguments must be expressions
that evaluate to decimal integers. [MOD deel dec2] returns the string representation of the value
of deel modulo dec2. That is, it returns the remainder resulting from division of deel by dec2.
For example, [MOD 27 4] returns 3. Attempting to divide a number by zero or by a larger number
returns deel; no error is indicated.

▶ [OCTAL octal-string]
Converts an octal number to decimal, octal-string is an expression that must evaluate to a valid
octal number. This function returns a string representation of the decimal equivalent of octal-
string. For example, [OCTAL 10] returns 8.

12-3

CPL User's Guide

▶ [TO_HEX decimal-string]
Converts a decimal number to hexadecimal, decimal-string is an expression that must evaluate to
a valid decimal number. This function returns a string representation of the hexadecimal
equivalent of decimal-string. For example, [TO_HEX 15] returns F.

▶ [TO_OCTAL decimal-string]
Converts a decimal number to octal, decimal-string is an expression that must evaluate to a valid
decimal number. This function returns a string representation of the octal equivalent of decimal-
string. For example, [TO_OCTAL 8] returns 10.

String Functions
String functions take as input one or more strings of characters. An input string can contain
quoted or unquoted literals, function calls, variable references or any combination of these. Some
string functions return a quoted string, others return an unquoted string.

▶ [AFTER string find-string]
Returns the substring of string that occurs to the right of the leftmost occurrence of find-string in
string. It returns the null string if find-string does not occur in string or if find-string is at the right
end of string. For example, [AFTER abcxdefxg x] returns defxg. The AFTER function returns a
quoted string.

▶ [BEFORE string find-string]
Returns the substring of string that occurs to the left of the leftmost occurrence of substring find-
string in string. It returns string if find-string does not occur in string, and returns the null string if
find-string is at the left end of string. For example, [BEFORE abcxdefxg x] returns abe. The
BEFORE function returns a quoted string.

▶ [INDEX string find-string]
Returns the position of the leftmost occurrence of find-string within string. Positions are counted
from 1. If find-string does not occur within string, INDEX returns 0. For example, [INDEX
abedef de] returns 4.

12-4

Functions

▶ [LENGTH string]
Returns the number of characters in string. The string does not need to be enclosed in single
quotation marks unless it contains a percentage sign (%), a single quotation mark ('), or a square
bracket character that is to be treated as a literal. A single quotation mark used as a literal must be
doubled. Single quotation marks used to quote a string are not counted in the length of the string.
For example, [LENGTH 'can"t'] returns a length of 5.

▶ [NULL string]
Returns TRUE if string is either the true null string or ", and FALSE otherwise.

▶ [QUOTE stringl {string2} (string3> (...)]
Returns the input string(s) as one quoted string. QUOTE encloses this string with a pair of single
quotation marks, then doubles any single quotation marks within the quoted string. The CPL
interpreter does not evaluate the contents of a quoted string. Therefore, this function is useful
when it is necessary to suppress the meaning of special symbols in a text string. See Chapter 11
for a discussion of quoted strings. For example,

[QUOTE xy'l'z] returns 'xy'T'z'
[QUOTE abe 'd e' fg] returns 'abe "d e" fg'

▶ [RESCAN string_expression]
Performs a two-step unquote operation. First, RESCAN unquotes string_expression. It then
rescans this unquoted string, evaluating any function calls or variable references that no longer
appear within quotation marks. For example, [RESCAN '[BEFORE "[do not eval this]xxx" x]']
returns [do not eval this].

▶ [SEARCH stringl string2]
Returns the position (counting from 1) of the first character in stringl that appears in the string
string2. For example, [SEARCH abc.def <>.+] gives 4. If no character of stringl appears in
string2, the SEARCH function returns 0.

▶ [SUBST stringl string2 string3]
Replaces all occurrences of string2 in stringl with string .̂ For example, [SUBST aabbaabbaa bb
qq] returns aaqqaaqqaa. The SUBST function returns a quoted string.

12-5

CPL User's Guide

▶ [SUBSTR string start-pos {num-chars}]
Counts start-pos characters from the beginning of string, then returns a string of characters of the
length specified in num-chars. start-pos is an integer that indicates the first string position to
return. String positions are counted from left to right, starting with 1. num-chars is the number of
characters to return; it must be either a positive integer or omitted.
If you omit num-chars, SUBSTR returns all characters in string starting with the position
specified by start-pos and continuing to the end of the string. If num-chars is present, SUBSTR
returns the characters in string starting with the position specified by start-pos and continuing for
the number of characters specified in num-chars. If start-pos exceeds the number of characters in
string, SUBSTR returns a null string. If num-chars exceeds the number of characters from start-
pos to the end of the string, SUBSTR returns all of the characters from start-pos to the end of the
string. Neither start-pos nor num-chars can take a value of zero or a negative number. The
SUBSTR function returns a quoted string. For example,

[SUBSTR abcde 3 2] returns cd
[SUBSTR 'ab de' 2] returns 'b de'

▶ [TRANSLATE string {out-chars in-chars}]
Returns a string computed by the rule: for each character in string, if that character appears in the
n position in in-chars, then replace it with the n character in out-chars. More explicitly,

for each character in string:
if current_char_in_string is in the n position in in-chars

then next_char_in_result = n character in out-chars
else next_char_in_result = current_char_in_string

The TRANSLATE function returns a quoted string.
If both out-chars and in-chars arc omitted, all lowercase letters in string are converted to
uppercase, and that result is returned. If only in-chars is omitted, then in-chars is assumed to be
the entire ASCII collating sequence. For example,

[TRANSLATE abe] returns ABC
[TRANSLATE 'abe' 123 cab] returns '231'
[TRANSLATE mixxpelled s x] returns misspelled

▶ [TRIM string {which-side} {trim-char}]
Trims a leading or trailing sequence of characters from string, which-side specifies which end of
string to trim; it may be -RIGHT, -LEFT, or -BOTH, trim-char specifies the character to be
trimmed, trim-char is always a single character. If trim-char is omitted, a blank is assumed. If
which-side and trim-char are both omitted, leading and trailing blanks arc trimmed. For example,
[TRIM bbbabcbbb -both b] returns abe. The TRIM function returns a quoted string.

12-6

Functions

▶ [UNQUOTE string]
Removes the outermost pair of quotation marks from string and changes every remaining pair of
adjacent quotation marks to a single quotation mark. See the discussion of quoted strings in
Chapter 11. For example,

[UNQUOTE "'xx""yy'"] returns 'xx"yy'.

▶ [VERIFY stringl string2]
Returns the position (counting from 1) of the first character in stringl that does not appear in
string2. For example, [VERIFY 1298s8 0123456789] returns 5, because the 5th character in
stringl does not appear in string2. The VERIFY function returns 0 if all characters in stringl
appear in string2.

File System Functions
The following functions perform operations on existing files. Most of these functions request a
pathname as input. This pathname can be a full pathname, for example,
GLENN>TOOLS>HAMMER, or a filename, such as HAMMER. It is not necessary to specify
the disk partition name, unless different partitions have the same top-level directory names.
However, specifying the disk partition name can improve performance. If you specify a filename,
these functions assume that the file is located in the current directory. With the exception of
EXPAND_SEARCH_RULES and the serialization functions (KLMD, KLMF, and KLMT), none
of these functions can use the search rules facility.

f-TYPE "]
▶ [ATTRIB path ^ -DTM \> {-BRIEF}]

L-lengthJ
Returns information about the file specified by path, path must be a full pathname; this function
cannot use the search rules facility. Specify one of the options, -TYPE, -LENGTH, or -DTM,
when you call ATTRIB. The -TYPE option causes the function to return the type of the file path:
SAM, DAM, SEGSAM, SEGDAM, UFD, ACAT, or UNKNOWN. The -DTM option returns the
date/time modified information on the file in the format produced by [DATE -FULL]. The
-LENGTH (or -LEN) option returns the length of the file in words.
The -BRIEF option, if used, suppresses the display of ATTRIB error messages.

▶ [DIR path {-BRIEF}]
Returns the directory portion of the pathname path. For example, [DIR smith>x>y] returns
smith>x. An asterisk *, representing the home directory, is returned if the pathname is a simple
filename. The DIR function returns a quoted string. The -BRIEF option, if used, suppresses the
display of DIR error messages.

12-7

CPL User's Guide

▶ [ENTRYNAME path]
Returns the entryname (filename) portion of the pathname path. For example,

[ENTRYNAME smith>x>y]

returns

y

▶ [EXISTS path {type} {-BRIEF}]
Returns TRUE if a file system object with pathname path of type type exists, and FALSE if not.
If type is -ANY, any type of object is acceptable, type may also be -FILE, -DIRECTORY, -DIR,
-SEGMENT_DIRECTORY, -SEGDIR, -ACCESS_CATEGORY, or -ACAT, to check for the
existence of an object of that type. The default type is -ANY.
The -BRIEF option, if specified, suppresses the display of EXISTS error messages.

▶ [EXPAND_SEARCH_RULES filename {-LIST_NAME listname} {type}
{-REFERENCING.DIR pathname}] {-SUFFIX sfxl {,...} }]

Returns the fully qualified pathname of filename, filename can be the name of any file system
object: file, directory, ACAT, or segment directory. This function uses the PRIMOS search rules
facility to determine the fully qualified pathname of the file system object. It searches all of the
locations listed in listname to locate the desired file system object. If filename cannot be found,
EXPAND_SEARCH_RULES returns the value $ERROR$.
The -LIST_NAME (-LNAM) option indicates which search list to use to locate the file. The
listname you specify must be a search list set for your user process. If you do not specify a
-LIST_NAME option, the function uses the COMMANDS search list for filenames that end in a
.RUN, .SAVE, or .CPL suffix, and the ATTACHS search list for all other filenames.
You can specify a type option of -FILE, -DIRECTORY (-DIR), -SEGMENT_DIRECTORY
(-SEGDIR), or -ACCESS_CATEGORY (-ACAT). These options allow you to limit the search
to that particular type of file system object.
The -REFERENCING_DIR (-REFDIR) option permits you to specify a search rule that PRIMOS
substitutes for the [referencing_dir] entries in the search list. EXPAND_SEARCH_RULES uses
this search rule to search for the file system object.
The -SUFFIX (-SFX) option specifies suffixes that PRIMOS appends to the objectname to
conduct the search. The suffixes must begin with a period (for example, .RUN). You can specify
up to eight suffixes following a -SUFFIX option. Suffixes are searched for in the order listed. If
no match is found with all listed suffixes, PRIMOS searches for the object with no suffix.
You can call the EXPAND_SEARCH_RULES function using the abbreviated name ESR. The
use of EXPAND_SEARCH_RULES is shown in the following example.

&ARGS FILENAME
&S PATHNAME := [ESR %F I LENAME % -LNAM MYLIST]

This example uses the MYLIST search list to locate the directory containing FILENAME. It
returns the absolute pathname of FILENAME.

Functions

For further details concerning the search rules facility, refer to the Advanced Programmers
Guide, Volume II. EXPAND_SEARCH_RULES can also be invoked as a PRIMOS command.
For further details on the EXPAND_SEARCH_RULES command, refer to the PRIMOS
Commands Reference Guide.

▶ [GET_VAR expr]
Returns the current value of a local variable or global variable, expr must evaluate to a valid
variable name. GETJVAR returns the value of that variable if the variable has been defined, or
the string $UNDEFINED$ if the variable is undefined.
If expr is a global variable, GETJVAR accesses your active global variable file and returns the
value of the global variable named in expr. GETJVAR also returns $UNDEFINED$ if no global
variable file is defined or active.
GETJVAR can also be used to get the value of a variable whose name is computed at runtime.
This is useful for simulating indexing and indirection. For example, [GETJVAR a%i%] returns
the value of variable al if i has the value 1.

^ [GVPATH]
Returns the pathname of your active global variable file. GVPATH returns -OFF if you have no
global variable file defined or active.

▶ [KLMD pathname {option}]
Returns a string of information about Prime software named in pathname. This serialization
information includes the name of the software, its revision number, and other attributes.

pathname can be a filename or a complete pathname of a system code object file (for example
EMACS.RUN). If pathname is a filename, KLMD uses the search rules facility to search the
directories listed in the COMMANDS search list for the file. If KLMD cannot find the file, or if
the file is not of the appropriate type, it issues an error.

option specifies which information is to be returned. The available options are

-STD Returns standard data
-DST Returns distribution data
-ALL Returns all data

The standard data contains the following fields:

Product name 20 characters
Revision number 20 characters
Serial number 20 characters
L i c e n s e e 4 0 c h a r a c t e r s
Expiry date 18 characters
[undefined] 30 characters

12-9

CPL User's Guide

The distribution data contains the following fields:

Organizat ion 20 characters
I n d i v i d u a l 6 c h a r a c t e r s
Issue date 18 characters
Order number 8 characters
Customer service number 10 characters

The -ALL option returns both the standard data and the distribution data. It returns the following
fields:

Standard data 148 characters
[u n d e fi n e d] 8 8 c h a r a c t e r s
Distribution data 62 characters
[undefined] 130 charac te rs

If you do not specify an option, KLMD returns the -STD (standard) data.

▶ [KLMF pathname {option}]
Returns the item of information specified in option from the Prime software named in pathname.
The item of serialization information requested in option can be the name of the software, its
revision number, or some other attribute.

pathname can be a filename or a complete pathname of a system code object file (for example
EMACS.RUN). If pathname is a filename, KLMF uses the search rules facility to search the
directories listed in the COMMANDS search list for the file. If KLMF cannot find the file, or if
the file is not of the appropriate type, it issues an error.

option indicates a specific item of information. For example, -REV returns the software revision
number. You must specify one and only one option when you call KLMF. You can specify either
the full name or an abbreviated name for each option. The available options are as follows:

O p t i o n D e s c r i p t i o n
-PRODUCT Produc t name
-REVISION Revis ion number
-SERIAL_NUMBER Serial number of your copy of the software
-LICENSEE Name of the software licensee
-EXPIRY_DATE Date the software license expires
-ORGANIZATION Prime software distribution organization
-INDIVIDUAL Prime distribution contact
-ISSUE_DATE Date this copy of the product issued
-ORDER_NUMBER Order number used by Prime
-CSM NUMBER Customer service maintenance number

12-10

Functions

▶ [KLMT pathname {option {value}} {option {value}}...{-PART}]
Returns TRUE if value matches the corresponding attribute of the Prime software named in
pathname. KLMT returns FALSE if the value you specify does not match the corresponding
software attribute. KLMT matches the attribute specified in option. The available options are
listed in the description of the KLMF function.

pathname can be a filename or a complete pathname of a Prime runfile (for example
EMACS.RUN). If pathname is a filename, KLMT uses the search rules facility to search the
directories listed in the COMMANDS search list for the file. If KLMT cannot find the file, or if
the file is not of the appropriate type, it issues an error.
You use option to indicate a specific item of information and value to specify its value. KLMT
returns TRUE if the value you specify is the actual value in the software. For example, if you
specify -REV 21.0.00, KLMT returns TRUE if the software revision number is 21.0.00. KLMT
returns FALSE if the software revision number is any other value, values are converted to
uppercase before they are compared.
You can specify multiple pairs of option and value, one value per option. KLMT returns TRUE if
all of the values are correct, and FALSE if any of the values is incorrect. You can specify options
in any sequence. If you specify an option but no value, KLMT considers value to be the null
string.
-PART specifies that the matching of values with the software data tests only the part of the data
specified in value. For example, if you specify -REV 21 -PART, KLMT only compares the first
two digits of the revision number. If the -PART option is present, KLMT only compares the
specified parts of all listed values.

▶ [OPEN.FILE pathname -MODE m status-var]
Opens a file for reading and writing. Unlike the OPEN command, the OPEN_FILE function does
not require you to specify a unit number. The file specified by pathname is opened on some
available unit; the unit number (in decimal) is returned as the value of the function, pathname
must be either a full pathname, or the name of a file in the current directory; OPEN_FILE cannot
use the PRIMOS search rules facility. The -MODE option indicates whether the file is to be
opened for reading only (m = r or R), for writing only (m = w or W), or for reading and writing
(m = wr or WR, position independent). The variable whose name is status-var is set to 0 if the
operation is successful and is nonzero otherwise; status-var may be a local or global variable.
For example,

&S READ_UNIT := [QPEN_FILE ALPHA -MODE R OK]

In this example, the file named ALPHA is opened for reading. ALPHA must be located in the
currently attached directory. The file unit number is returned as the value of the variable
READJJNIT. The variable OK is set to 0 if the file opening is successful. The variable OK is set
to a nonzero value if the file opening is not successful. (Because the value of OK is being set, not
referenced, by the function call, no percent signs surround the variable name.)

12-11

CPL User's Guide

Note
CPL uses decimal numbers to refer to file units, not octal numbers. If
you open a file using the statement

&SETJVAR A := [CPEN_FILE THISFILE -MODE R STATUS]

close it in one of the following three ways:

CLOSE THISFILE
CLOSE -UNIT %A%
CLOSE [TO_OCTAL %A%]

Do not say simply, CLOSE %A%; this syntax assumes that A is an
octal value and does not work with a decimal unit number.

▶ [PATHNAME rel-path {-BRIEF}]
Returns the full pathname given the relative pathname rel-path. rel-path is a filename or partial
pathname in the current directory. The PATHNAME function cannot use the search rules facility.
Note that [DIR [PATHNAME *]] returns the pathname of the current directory.

The PATHNAME function works correctly whether or not the rightmost component of rel-path
exists. But it produces an error if any other directory in rel-path does not exist. For example,

[PATHNAME *>FOO>BAR]

Returns a full pathname whether BAR exists or not, but produces an error if FOO does not exist.

The -BRIEF option, if specified, suppresses the display of PATHNAME error messages.

▶ [READ_FILE unit status-var {-BRIEF}]
Reads a record from the file open on unit and returns the quoted value of that record. By calling
READ_FILE repeatedly, you can sequentially read the records in a file, unit is the file unit
number used to open the file; for example, the value returned by the OPEN_FILE function. The
value of unit must be a decimal integer. READJFILE sets the variable status-var to 0 if the
operation is successful and nonzero otherwise, status-var is set to 1 when End of File is reached.
The -BRIEF option, if specified, suppresses the display of READJFILE error messages.

The following example opens a file using the OPEN_FILE function, then reads the first ten
records:

&S R_STATUS := 0
&S R_UNIT := [OPEN_FILE GLENN>TOOLS>HAMMER -MODE R 0_STATUS]
&DO I := 1 &TO 10 &WHILE %R_STATUS% = 0
&S LINE := [READ_FILE %R_UNIT% R_STATUS]
TYPE Record number %I% is: %LINE%
SEND

12-12

Functions

Each time the READ_FILE function call is evaluated, it reads a one-line record from the file open
on file unit %R-UNIT%. READJFILE returns the line of text as the value of the variable LINE.
The variable R_STATUS is set to 0 if the read is successful, to 1 if End of File has been reached,
or to some other nonzero value if an error has occurred. Because the value of R_STATUS is
being set each time the function call is evaluated, the variable name is not placed inside percent
signs. READJFILE does not close the file; you must issue an explicit CLOSE statement (as
described in OPEN_FILE) when you wish to close the file.

▶ [WILD wild-path {wiId-2 ... wild-n} {control} {-SINGLE unit} {-BRIEF}]
Produces a blank-separated list of entrynames representing the file system objects that match the
specifications of wild-path, wild, and control, wild-path specifies the directory to consider, and
the first wildcard name. The other wild arguments specify additional wildcard names (these
cannot be pathnames), control specifies DTM (Date and Time last Modified) or type restrictions.
The control options, and their abbreviations, are as follows:

-BEFORE date
-AFTER date
-FILE
-DIRECTORY
-SEGMENT_DIRECTORY
-ACCESS_CATEGORY

For example, [WILD @.PL1 @.F77 -FL] returns a list of files that end with the .PLl and .F77
suffixes; for example, A.PL1 B.PL1 FOO.F77 BAR.F77 Z.PL1. Listed items are separated by
spaces.
If a call on WILD is likely to produce a result longer than the 1024 character maximum, use the
-SINGLE option. The -SINGLE option causes WILD to return matching names one at a time,
rather than in one long string. Each time WILD is invoked it returns the next matching name. The
-SINGLE option takes a variable name as an argument; for example,

[WILD london>@.pll -SINGLE unit]

You must initialize unit to zero before calling WILD. When WILD is called with the -SINGLE
option and the value of unit is zero, WILD opens the specified directory on an available file unit,
sets unit to the (decimal) number of that unit, and returns the first matching name as its value.
Subsequent calls read the directory open on the unit, and return the remaining matching names
one at a time. When no more matching names are found, the true null string is returned and the
directory closed. Do not modify the value of unit between calls to WILD for the same directory.
The -SINGLE option is especially useful with the &ITEMS directive of the &DO statement. (See
Chapter 9 for a discussion of the &DO &ITEMS loop and an example of the -SINGLE option.)
The -BRIEF option, if used, suppresses any messages from the WILD function.

12-13

CPL User's Guide

▶ [WRITE_FILE unit text]
Writes a line of text into an open file, text can be any character string. WRITEJFILE strips one
layer of quotation marks from text and then writes text into the file open on unit, unit is the file
unit number of the open file, represented as a decimal integer. You can open a file using the
OPEN_FILE function, which returns a decimal unit number. The WRITE_FILE function returns
0 if the operation is successful and nonzero otherwise. WRITE_FILE does not close the file; to
close the file you must invoke a CLOSE operation, as described in the description of the
OPEN RLE function.

Operating System Functions
▶ [ABBREV -EXPAND text]

Expands the user abbreviation text and returns the expanded string as its result, text must be one
of the current user's abbreviations. The user's abbreviation file must be active. ABBREV does not
quote its result.
If text is not an abbreviation, text itself is returned. If no abbreviation file is active, an error is
reported.

▶ [CNDJNFO control-flag]
Returns information about the most recent condition on the stack. The function returns different
information depending on the setting of control-flag. Three possible settings for control-flag are

• -NAME returns the name of the condition.
• -CONTINUE_SWITCH (or -CONTJSW) returns the Boolean value of the continue-

to-signal switch.
• -RETURN_PERMIT (or -RET_PMT) returns the Boolean value of the return-

permitted switch.
If no condition frame is on the stack, -NAME returns SNONES, and -CONTINUE_SWITCH
and -RETURNJPERMIT both return FALSE. The severity code is set to warning in this case.
(For information on conditions and on the Prime Condition Mechanism, see the Subroutines
Reference Guide, Volume III.)

▶ [DATE {format}]
Returns the current date/time in a variety of formats. If format is omitted, the date only is
returned: 86-10-21. The other possibilities for format are

Format Example
-FULL 86-10-21.13:24:48.Tue
- U S A 1 0 / 2 1 / 8 6

12-14

Functions

Format Example
-UFULL 10/21/86.13:24:48.Tue
-VFULL 21 Oct 86 10:54:32 Tuesday
-DAY 21
-MONTH October
-YEAR 1986
-VIS 21 Oct 86
-TIME 13:24:48
-AMPM 1:24 PM
-DOW Tuesday
-CAL October 21, 1986
-TAG 861021
-FTAG 861021.132448

The DATE function returns a quoted string.

▶ [QUERY {text} {default} {-TTY}]
Displays a question on the user terminal and waits for a YES or NO answer. QUERY displays
text on the user's terminal, following it with a question mark. QUERY then halts processing,
awaiting a response.
You can respond to a QUERY function from a terminal or from a COMI file. The response must
be YES, Y, OK, NO, N (in uppercase or lowercase), or a null response. Press the carriage return
after typing your response. YES, Y, and OK return TRUE. NO and N return FALSE.
A carriage return by itself is a null response. A null response returns the default value; if no
default is specified, a null response returns FALSE. The default option can be any text string; it is
not limited to the values TRUE and FALSE. Lowercase letters in the default value are returned as
uppercase letters.
Both text and default are optional. If you specify them, these options can be any text string,
including the null string (represented as "). If text or default contain blanks or special characters,
you must enclose the string in single quotation marks.
The -TTY option forces the QUERY function to go to the terminal for input, no matter where the
command stream that invoked it originated. Without this option, the function takes input from
whatever command stream invoked the CPL program, whether that is a user at a terminal, a
&DATA group within a CPL program, or a COMINPUT file.

▶ [RESPONSE {text} {default} {-TTY}]
Displays a question on the terminal and waits for a user response. RESPONSE returns die user
response or a default value. This function can receive input from the user terminal or from a
COMI file.
RESPONSE displays text on the user's terminal, following it with a colon, text can be any text
string, including the null string. The program then waits for a user response.

12-15

CPL User's Guide

The user responds by typing any text string, followed by a carriage return. A carriage return by
itself is a null response. A null response returns the default value; if no default value is specified,
a null response returns the null string. The value returned by RESPONSE is a quoted string.
The text and default options can be any text string, including the null string. If a text or default
option contains blanks or special characters, it must be enclosed in single quotation marks.
The -TTY option forces the RESPONSE function to go to the terminal for input, no matter where
the command stream that invoked it originated. Without this option, the function takes input from
whatever command stream invoked the CPL program, whether that is a user at a terminal, a
&DATA group within a CPL program, or a COMINPUT file.

12-16

13
Object Arguments and
Option Arguments

This chapter provides a full reference for the use of arguments in CPL. CPL arguments are
declared using the &ARGS directive; they receive their values from the command line when the
program is executed.
The chapter discusses the format and use of

• Object arguments (position-dependent arguments)
• Option arguments (position-independent arguments)
• The REST and UNCL data types, which assign multiple command line values to a

single argument

The &ARGS Directive
The &ARGS directive is a powerful tool for argument specification and validation. You use the
&ARGS directive to declare local variables whose values are supplied in the command line used
to invoke the CPL program.
The arguments described in Chapter 2 and Chapter 6 are object arguments. Object arguments are
positional; that is, they must appear on the command line in the same order as they appear in the
&ARGS directive. To allow position independence on the command line, you can define option
arguments, which use flags to indicate the presence of specific arguments.
You can define a type for each argument, such as TREE or PTR, and have the &ARGS directive
verify that the argument value supplied on the command line is of the declared type. You can also
define a default value for each argument. The CPL interpreter assigns the default value to the
argument if the command line does not supply a value for that argument.
The number of argument values that you supply in the command line is normally equal to or less
than the number of arguments declared in the &ARGS directive. If the number of argument
values in the command line exceeds the number of arguments declared in the &ARGS directive, a
fatal error occurs, unless you have provided an argument to handle the excess. You can capture
these excess argument values and prevent the error by declaring a REST or UNCL argument in
the &ARGS directive.

13-1

CPL User's Guide

An &ARGS directive may appear anywhere in a CPL program, although it must appear before
the variables that it declares are used. When CPL encounters the &ARGS directive, it processes
the arguments on the command line that invoked the CPL program. A CPL program may have
more than one &ARGS directive. If more than one &ARGS directive is executed, CPL applies
the same command line to each &ARGS directive.

Object Arguments
The format for object arguments is

&ARGS name{:{type}{=default}} {;name..}

Object arguments are positional; that is, they must appear on the command line in the same order
as they appear in the &ARGS statement. For example, suppose CPL program MYPROG.CPL is
to have three arguments. You include a statement like this:

&ARGS SOURCE; DEST; NOLINES

If this program is invoked by the command line

R MYPROG.CPL Infile Out file 100

then the variable SOURCE has the value INFILE, DEST the value OUTFILE, and NOLINES has
the value 100. Note that in this simple default situation, lowercase letters on the command line are
converted to uppercase letters. You can control conversion of letters by specifying a type for each
argument.
An error occurs if you supply too many arguments on the command line. In the above example,
typing

R MYPROG.CPL INFILE OUTFILE 100 LISTFILE

causes printing of the message Too many object arguments specified. LISTFILE
(cpl). If too few arguments are given, the omitted ones are assigned a system default value
according to their type. Table 13-1 lists the supported data types and their default values. The
default type is CHAR and its default value is the null string (").

Specifying Types
You can specify a type for each argument by adding a colon (:) and the name of a type after the
argument name. If you omit type, the argument's data type defaults to CHAR.
Specifying a type restricts the acceptable values for that argument. For example, if you specify
&ARGS NOLINES:DEC, the NOLINES argument is restricted to decimal integer values. CPL

13-2

Object Arguments and Option Arguments

Table 13-1
Data Types for CPL Arguments

Type Default Description
CHAR Any character string with a maximum of 1024 characters. Lowercase let

ters are shifted to uppercase. This is the default type.
CHARL Any character string with a maximum of 1024 characters. Lowercase let

ters are not shifted to uppercase.
TREE A PRIMOS pathname with a maximum of 128 characters.
DEC A decimal integer.
OCT An octal integer.
HEX A hexadecimal integer.
ENTRY »> A file entryname with a maximum of 32 characters.
PTR 7777/0 A virtual address in format octal/octal.
DATE A calendar date in the form mmlddlyy hh:mm:ss day.
REST The remainder of the command line.
UNCL All command line items not accounted for by the other &ARGS argu

ments.

checks the type of the argument value on the command line against the type declared for that
argument in the &ARGS directive. The CPL interpreter generates a diagnostic and an error
severity code if you supply an illegal argument value.
Within a CPL program, arguments are treated as ordinary variables. An argument value can be
altered just like other variables; the type is not checked when an argument is assigned a value
using the SETJVAR command or the &SETJVAR directive.
To add data types to the previous example, specify

&ARGS SOURCE:TREE; DEST:TREE; NOLINES:DEC

A valid command line is

R MYPROG.CPL MYDIR>INFILE MYDIR>OUTFILE 50

How Null Strings Are Handled
If you do not specify an argument value on the command line, CPL assigns the corresponding
argument a default value, as shown in Table 13-1. This default is frequently the null string (").
The command processor removes all occurrences of the null string from a command before
executing it. For example, if you create a CPL program named MYPROG.CPL, which declares an
argument named F77ARGS,

&ARGS SOMEFILE; F77ARGS

13-3

CPL User's Guide

and the CPL program uses the variable %F77ARGS% in this line:

F77 MYFILE.F77 %F77ARGS%

You could run this program using the command line

R MYPROG.CPL MYDIR>SOMEPROG

Note that this command line omits a value for the F77ARGS argument. If echoing is enabled
when you run this CPL program, you see this echoed at your terminal:

F77 MYFILE.F77 ''

The " indicates that the value of %F77ARGS% is the null string, which CPL assigned as the
system default value for the omitted F77ARGS argument. The command processor removes the "
before executing the command.

Argument Defaults
You may specify a default value for each argument to override the system default values. If you
omit a value for an argument from the command line, CPL assigns the default value to the
argument. You can establish your own default value by typing an equal sign and the default after
the declared type. For example,

&ARGS DIRECTORY:TREE=MYDIR

If you do not declare the type, the default appears as follows:

&ARGS DIRECTORY:=MYDIR

In this case, the type is taken to be CHAR.

Continuing the example, you can declare defaults like this:

&ARGS SOURCE:TREE; DEST:TREE=MYDIR>OUTFILE; NOLINES:DEC=100

Typing

R MYPROG.CPL MYDIR>TEST

assigns MYDIR>TEST to SOURCE, the default value MYDIR>OUTFILE to DEST, and the
default value 100 to NOLINES.

The default value must match the type of the argument. For example, NOLINES:BIN=100 is a
valid value, but NOLINES:BIN=ABC is not. An argument of type CHAR can take a default
value containing uppercase or lowercase letters; it converts the lowercase letters to uppercase

13-4

Object Arguments and Option Arguments

when it assigns the default value to variables. If a default value is of the wrong type, the CPL
interpreter cancels program execution with an error. CPL issues the error even if the argument
receives a value of the proper type from the command line.
You can use a function call as a default value. For example,

&ARGS REPORTDATE: = [DATE]

However, you cannot use a function call containing a blank, such as [DATE -USA]. An argument
value containing a blank must be enclosed in quotation marks. Quoting a string disables its
evaluation.
You can use a global variable reference as a default value. For example,

DEFINE_GVAR GLENN>GLOBALS
&ARGS DIRECTORY: CHAR=% . GVDIR%

You can use a local variable reference as a default value. For example, suppose the local variable
STANDARD_DIR has the value LAUREL>HARDY, then the &ARGS directive

&ARGS COMPILE_DIR:CHAR=%STANDARD_DIR%

is transformed to

&ARGS COMPILE_DIR: CHAR=LAUREL>HARDY

and LAUREL>HARDY is assigned to COMPILE_DIR, if no value is supplied on the command
line.
Variable references used in default may be references to other arguments in the same &ARGS
directive. For example,

&ARGS COMPILE_DIR:CHAR=%STANDARD_DIR% ;OBJ_DIR:CHAR=%COMPILE_DIR%

This example uses the value assigned to argument COMPILE_DIR as the default value of
argument OBJ_DIR; that is, if no value is typed in for OBJ_DIR on the command line, it defaults
to be the same directory as COMPILE_DIR. This type of assignment works regardless of the
order of the arguments in the &ARGS directive, because CPL first interprets all of the &ARGS
directive, and then assigns default values to arguments.
Suppose a CPL program contains the following statements:

&SET_VAR ARG_VAR := ZYMURGY
&ARGS ARG_VAR:CHAR; OTHER_ARG: CHAR=%ARG_ VAR%

The first of these two statements has no effect whatsoever. Since the &ARGS directive is
interpreted before the default values are assigned, the value used as the default of OTHER_ARG
is whatever value was given to ARG_VAR in the command line, not the string ZYMURGY.

13-5

CPL User's Guide

A local variable reference used as a default value cannot refer to another variable reference in the
&ARGS directive. Indirect references, such as

&ARGS FIRST:=%SECOND%; SECOND:=%THIRD%; THIRD:=MYPROG

cancel program execution with an error message. Circular references like

&ARGS FIRST:=%SECOND%; SECOND:=%FIRST%

also cancel program execution with an error message.

Option Arguments
The format for option arguments is

&ARGS optname:-flag!ist{ name{:{type}{=default}}}{ name..}{;optname...}

You can use option arguments to make CPL arguments position independent. An option argument
identifies a particular command line argument or group of arguments by a flag name, rather than
by its position on the command line.
CPL option arguments are similar to the options used in standard PRIMOS commands. In a
PRIMOS command, you can specify options in any sequence. Each option is identified by a flag
name that begins with a hyphen. For example, the F77 command takes several options:

F77 MYPROG.F77 -LISTING A_PROG.LIST -DEBUG

In the F77 command, -LISTING is an option that names the listing file; you specify the name of
the listing file immediately after the -LISTING option. -DEBUG is an option that selects a
compiler option. Reversing the sequence of these two options does not affect the execution of the
F77 command.
In CPL, you can create your own option arguments and flag names. You specify the option
argument name and a flag name in the &ARGS directive, and then type the flag name on the
command line that runs the CPL program.
A flag name must begin with a hyphen; it can be as many as 32 characters in length. A flag name
can contain any characters except the &ARGS directive delimiters (blank, comma, semicolon,
colon, and equal sign) and certain PRIMOS command line characters (percentage sign, brackets,
parentheses, single quotation mark, and asterisk). For example, -LISTING, -MYOPT.l, and
-NO_BINARY are valid flag names. Avoid numeric flag names (for example, -123), because
they may be mistaken for negative integers.
When you specify arguments in the &ARGS directive, you can specify all arguments as option
arguments, or specify some arguments as object arguments and some as option arguments. In the
&ARGS directive, all object arguments (that is, positional arguments) must precede any option
arguments. The sequence of the option arguments themselves is not significant. For example,

&ARGS ARG_A; ARG_B; ARG_C; ARG2 :-SECOND; ARG1:-FIRST; ARG3:-THIRD

~ >

13-6

Object Arguments and Option Arguments

This example specifies three object arguments followed by three option arguments. When you
specify values for these arguments on the command line, you must specify the object arguments
in the correct sequence. However, you can specify the flag names of the option arguments in any
sequence. You can even specify these flag names before or between the positional object
arguments. For example,

R MYPROG.CPL A -THIRD B -FIRST -SECOND

Omitting an object argument value from the command line does not affect the option arguments.

Switches
The simplest option argument is a switch. A switch option argument is either active or inactive. If
the flag name of the switch is present anywhere on the command line, the option argument is
active. For example, if you specify -DEBUG on the command line, CPL activates the
corresponding option argument in the &ARGS directive. Activating a switch assigns a flag name
value to the option argument.
A switch has the following format:

&ARGS optnamei-flaglist

-flaglist is a list of one or more flag names. This list of flag names allows you to specify multiple
synonyms for the switch argument. When you specify any one of these flag names on the
command line, the switch is active. Each flag name must begin with a hyphen. Flag names in
-flaglist are separated by commas.
optname is the name of the option argument. When the switch is active, optname is set to the first
name in the -flaglist. For example,

&ARGSLIST_SW:-LISTING, -L

If either -LISTING or -L appears on the command line, CPL assigns the value -LISTING to
LIST_SW.
If none of the names in -flaglist appear on the command line, CPL sets optname to the null string
("). You cannot specify a data type or default value for optname. Omitting a flag name from the
command line has no effect on the other arguments in the &ARGS directive.

Flags
You can use a flag name to identify one or more arguments that appear immediately after the flag
name on the command line. Arguments associated with a flag name are known as an argument
group. The flag name signals the presence of the argument group on the command line. Because
the flag name identifies the group, the flag name and its group can appear anywhere on the
command line.

13-7

CPL User's Guide

A flag option argument has the following format:

&ARGS optname:-f!aglist argl {arg2} ...

optname and -flaglist are defined in the previous section. They perform the switch operation
described in that section. If you specify any of the flaglist flag name synonyms on the command
line, CPL performs the switch operation. It sets optname to the first name in -flaglist. CPL then
reads the argument group values that follow the flag name from the command line. It processes
the arguments in the argument group as ordinary object arguments. If you do not specify a flag
name on the command line, CPL sets optname to the null value and sets the members of its
argument group to their default values.

argl is an object argument that is a member of the argument group. You can specify multiple
object arguments (argl, arg2, and so forth) in an argument group; you separate these object
arguments with blank spaces.
For example, the program COMPILE_AND_GOCPL contains the statement

&ARGS LIST_SW: -LISTING, -L LIST_FILE:TREE;~
EXEC_SW: -EXECUTE, -E CBJ_FILE:TREE LIBRARY:CHAR

This statement declares two argument groups: LIST_SW and EXEC_SW. The LIST_SW
argument group contains the LIST_FILE argument. The EXECJSW argument group contains two
arguments, OBJ_FILE and LIBRARY. LIST_FILE is flagged by either -LISTING or -L:
OBJJFILE and LIBRARY are both flagged by either -EXECUTE or -E.
Some examples of valid invocations of COMPILE_AND_GO.CPL are

R COMPILE_AND_GO. CPL -E GLENN>NEW_OBJ PLlLIB -L GLENN>NEW_LIST

R COMPILE_AND_GO.CPL -L GLENN>NEW_LIST -E GLENN>NEW_OBJ PLlLIB

In these examples, each flag name (-E and -L) identifies an argument group. Each flag name is
followed by its appropriate argument values. As shown in these examples, you can specify the
argument groups in any sequence. However, you must specify the argument values within each
group in the proper order. Following the -E flag name, you must specify the values for the
OB J_FILE and LIBRARY arguments in that order.

CPL assigns the command line argument values that follow the flag name to the arguments in the
group until every argument in the group has received a value, or until CPL encounters another
flag name or the end of the command line.
Continuing the example with program MYPROG.CPL,

&ARGS QRIG_FILE:-SOURCE,-S SOURCE:TREE;~
DEST_FILE:-DEST, -D DEST:TREE=MYDIR>OUTFILE;~
L INES: -L INES, -L NOLINES:DEC=100

Notice the power of this brief statement. It defines three arguments: SOURCE, DEST, and
NOLINES. SOURCE must be a pathname; the argument on the command line corresponding to

13-8

Object Arguments and Option Arguments

SOURCE is flagged by being preceded by either-SOURCE or-S. DEST must also be a pathname;
its command line argument is flagged by either-DEST or-D, and defaults to MYDIR>OUTFILE.
NOLINES must be a decimal integer; it is flagged by -LINES or -L, and defaults to 100. In
addition, this &ARGS directive also defines three switches. It assigns ORIGJFILE the value
-SOURCE if that flag (or its synonym) is present on the command line; similarly, DEST_FILE is
assigned -DEST and LINES assigned -LINES, if those flags are present.
The following command line runs MYPROG.CPL:

R MYPROG.CPL -D HISDIR>HIS_OUTFILE -S MYDIR>INTEST

and results in the following values:

%ORIG_FILE% = -SOURCE
%SOURCE% = MYDIR>INTEST
%DEST_FILE% = -DEST
%DEST% = HISDIR>HIS_OUTFILE
%LINES% = "
%NOLINES% =100

Another example,

&ARGS SOURCE:TREE; LIST_FLAG:-LIST,-L LIST_FILE:TREE;~
FROM:-FROM FROM_S:DEC=l FROM_E:DEC=9999

The command

R MYPROG.CPL MYFILE -FROM 6 -L MYFILE.LIST

results in the following values

% SOURCE % = MYFILE
%LIST_FLAG% = -LIST
%LIST_FILE% = MYFILE.LIST
%FROM% = -FROM
%FROM_S% = 6
%FROM E% = 9999

REST and UNCL Data Types
The REST and UNCL data types assign multiple command line values to a single argument.
REST and UNCL are invoked after the other &ARGS arguments have received their values from
the command line. An argument with one of these data types is useful when you want CPL to
assign a few command line values to arguments, and then assign whatever else is left on the

13-9

CPL User's Guide

command line to a single argument. Only one of these arguments, either a REST or an UNCL
argument, can appear in each &ARGS directive.

• An argument with the data type REST is used primarily with object arguments. When
encountered, the REST argument is assigned the rest of the command line; that is,
everything on the command line to the right of the last assigned argument.

• An argument with the data type UNCL is used with option arguments. It is assigned
the unclaimed items that remain on the command line after all other arguments are
assigned.

Both the REST and UNCL arguments prevent the error that otherwise occurs if you specify more
arguments on the command line than occur are in the corresponding &ARGS directive.

The REST Argument
The REST argument is particularly useful when you want to assign multiple command line
arguments to a single variable. For example, a CPL program that runs a compiler can receive
many options for that compiler. Rather than establish a separate argument for each potential
compiler option, you can create one REST argument and assign all of the compiler options to that
one argument. This situation is shown in the following CPL program, MYPROG.CPL:

&ARGS FILENAME:TREE; F77ARGS:REST
F77 %FILENAME% %F77ARGS%

Typing
R MYPROG.CPL GLENN>TEST.F77 -LIST GLENN>LISTINGS>TEST -BIN GLENN>TEST.BIN

assigns to %F77ARGS% the rest of the command line:
-LIST GLENN>LISTINGS>TEST -BIN GLENN>TEST.BIN

The value assigned to the REST argument is not a quoted string, and therefore it can be evaluated
without unquoting. The REST data type does not perform case mapping; a command line
argument in lowercase letters is not converted to uppercase letters. You can specify a default
value for a REST argument.
If an &ARGS statement contains an object argument of type REST, that argument must be the
rightmost argument in the &ARGS directive, which must have no option arguments.
You can use multiple REST arguments in option argument groups. Each argument group can have
only one REST argument, the REST argument must be the rightmost argument in the group, and
only one argument group containing a REST argument can be invoked from the command line.
For example, the following CPL program takes as input the material, weight, and dimensions of
various inventory items. You can express these measurements in either metric units or American
units:

&ARGS MATERIAL; UNITS : -METRIC, -M KILOS: DEC MDIMENSIONS: REST; ~
UNITS:-AMERICAN,-A POUNDS:DEC ADIMENSIONS:REST

13-10

Object Arguments and Option Arguments

The following command line runs this program:

R INVENTORY.CPL WOOD -A 9 24in 11 in 5.4in

It performs the following assignments:

%MATERIAL% = WOOD
% U N I T S % = - A M E R I C A N
%POUNDS% = 9
%ADIMENSIONS% = 24in llin 5.4in

CPL stops parsing the command line when it encounters a REST type argument; therefore,
whatever remains on the command line is assigned to the REST argument, even if it is a flag for
another option argument.

The UNCL Argument
An argument of data type UNCL receives whatever is left unclaimed on the command line after
all other arguments have been satisfied. Unlike the REST argument, the UNCL argument does not
stop the parsing of the command line. Use the UNCL argument only in an &ARGS directive that
contains at least one option argument.

Only one instance of the UNCL type may appear in an &ARGS directive. The UNCL argument
may appear anywhere in the &ARGS directive, except that an option argument that receives a
flag value may not have type UNCL.
For example, the following program, named STAFFING.CPL, contains arguments for a
department name and the number of full-time and part-time employees. It uses the UNCL
argument to capture command line values that cannot be assigned to those values.

&ARGS DEPARTMENT; OTHERS: UNCL; FULL: -FULLTIME, -F FCOUNT:DEC; ~
PART : -PARTTIME, -P PCOUNT : DEC

When given the command line

R STAFFING.CPL MARKETING -F 24 -CONSULTANTS 2 -P 5 -INTERN 1

it assigns the following variables:

%DEPARTMENT% = MARKETING
%FULL% = -FULLTIME
%FCOUNT% =24
%PART% = -PARTT IME
%PCOUNT% = 5
%OTHER% -CONSULTANTS 2 -INTERN 1

As you can see, the UNCL argument can save unexpected command line data. The resulting value
of the UNCL argument is an unquoted string. Lowercase letters are not converted to uppercase.
You can assign a default value to an argument of type UNCL.

13-11

CPL User's Guide

Use caution when declaring arguments of type UNCL. The UNCL type does not ensure order
independence under all conditions. If a command line argument begins with a hyphen, and it is
not an option flag recognized in the &ARGS directive, all command line arguments between it
and the next identifiable option argument flag are assumed to belong to the unidentified
argument, and are assigned to the UNCL argument.
For example, consider the following program, MYPROG.CPL:

&ARGS FILENAME:TREE; F77ARGS:UNCL
F77 %FILENAME% %F77ARGS%

Typing

R MYPROG.CPL GLENN>TEST.F11 -LIST GLENN>LISTINGS>TEST

assigns

%FILENAME% = GLENN>TEST.F77
%F77ARGS% = -LIST GLENN>LISTINGS>TEST

which is the desired result.
However, typing

R MYPROG.CPL -LIST GLENN>LISTINGS>TEST GLENN>TEST.F11

assigns

%FILENAME% = "
%F77ARGS% = -LIST GLENN>LISTINGS>TEST GLENN>TEST.F77

because everything between an undeclared option argument and the next option argument (or the
end of the line) is assigned to the UNCL argument.

13-12

14
Writing Routines and Functions

This chapter describes how you can create your own routines and functions in a CPL program. It
describes the use of &ROUTINE, &CALL, &RETURN, and &STOP directives for the definition
of routines. It describes the use of the RESUME function call and the &RESULT directive for
the definition of user-written functions.
A routine is a user-written group of CPL statements located within your CPL program. These
CPL statements can be executed only by calling the routine (using the &CALL directive). A
routine can be called from anywhere in your CPL program. The first part of this chapter explains
the construction, invocation and execution of CPL routines. Chapter 15 explains how to use
routines for error handling and condition handling.
This chapter also describes how to create user-defined CPL functions. A user-defined function is
a group of CPL statements exterior to your CPL program that are executed by a function call in
your CPL program. When this function completes, it returns a value to your CPL program. The
last part of this chapter explains how to write and invoke functions.

A Note on Terminology
CPL routines are equivalent to subroutines or internal procedures in high-level languages. In PL/I,
for example, any program or subroutine is called a procedure. A program is an external
procedure. The subroutines it contains are internal procedures. And the main program, minus
its subroutines, is the main procedure. Figure 14-1 diagrams this terminology.
In this guide, the term routine refers to a CPL routine. (For example, we say that every routine
begins with a &ROUTINE directive.) The term procedure refers to a procedure of any sort
(main, internal, or external). For example, we say that a &RETURN directive causes a procedure
to return to its caller. This statement is equally true for internal and external procedures.

14-1

CPL User's Guide

&ARGS WHAT'

&CALL A

&RETURN

&ROUTINE A^

> MAIN PROCEDURE

> EXTERNAL PROCEDURE

> INTERNAL PROCEDURE

&RETURN

Figure 14-1
High-level Language Terminology

Writing Routines
Routines in CPL are intended primarily for error handling and condition handling. However, they
can be used for any purpose for which subroutines are used in high-level languages. For example,

• A routine can replace a lengthy &DO group following a &THEN, &ELSE, or
&WHEN. The routine call itself becomes the argument of the &THEN, &ELSE, or
&WHEN directive (for example, &THEN &CALL ROUTINE_A).

• A routine can be used when one operation must be performed several times during the
course of a program. You write the routine once, and place calls to the routine at all the
points where the routine is needed.

How Routines Operate
Routines in CPL operate under die following rules:

• They begin with the directive

&ROUTINE routine_label

• They are invoked with the directive

&CALL routine_label
14-2

f W r i t i n g R o u t i n e s a n d F u n c t i o n s

f F o r e x a m p l e ,

&CALL STARTUP /* calls the routine named STARTUP

&ROUTINE STARTUP /* the beginning of STARTUP routine

• They can be invoked only by the CPL file within which they exist.
• Their execution is ended by one of the following:

o A &RETURN directive
o A &STOP directive
o A nonlocal &GOTO (that is, a &GOTO to a label that is defined outside the routine

containing the &GOTO)
• They are physically terminated by one of the following:

o The presence of another &ROUTTNE directive (signalling the start of another
routine)

o The end of the CPL file

• They use whatever variables the main CPL procedure has defined. They do not create
their own copies of these variables. Rather, they act directly on the main procedure's
copy. Thus, if a CPL program contains the following code,

&S NUMBER := 10
&CALL DOUBLE
TYPE %NUMBER%
&RETURN
&ROUTINE DOUBLE
&SETJVAR NUMBER := %NUMBER% * 2
&RETURN

then the program, when invoked, types the number 20.
• They have their own &DEBUG, &SEVERITY, &CHECK, and &EXPAND settings.

If a routine does not set these directives explicitly, then the directives are set to their
default values when the routine is entered.
When control returns to the main procedure, the directive values are re-set to whatever
values were set by the main procedure.

• They may be invoked from within a &DATA group, but cannot supply commands to
the subsystem being run in that &DATA group. For example, in a &DATA group that
runs the BEND loader, you can call an exit routine, but not a routine that supplies a
BIND load library.

14-3

CPL User's Guide

Placement of Routines
Routines cease executing when they meet a &RETURN or a &STOP directive. However, they do
not physically end until they encounter another &ROUTINE directive (signalling the start of the
next routine), or the physical end of the CPL file.
A CPL program must not encounter a &ROUTINE directive during normal execution. Routines
may be entered only

• By the &CALL directive
• By execution of the error-handling directives, &SEVERITY, &CHECK, or &ON

If a CPL program does encounter a &ROUTINE directive during normal execution, execution
terminates with an error message.
The best place to put CPL routines, therefore, is at the end of the CPL file, following the main
procedure. For example,

/ * m a i n p r o c e d u r e b e g i n s h e r e

fiCALL ROUTINE_l
&CALL ROUTINE 2

&RETURN
&ROUTINE ROUTINE 1

/* end of main procedure
/* begin first routine

&RETURN
&ROUTINE ROUTINE 2

/* first routine ends
/* begin second routine

&RETURN /* second routine ends

14-4

Writing Routines and Functions

It is possible to place a routine in the middle of a CPL file. If you do so, however, your program
must &GOTO around the routine. For example,

&GOTO SKIP_ROUTINE
&ROUTINE OUT OF PLACE

&RETURN
&LABEL SKIP ROUTINE

This is neither readable nor efficient code; its use is not recommended.

Note
You may leave a routine and enter your main program via a &GOTO,
but you may not enter a routine via a &GOTO from the main
procedure. Attempting to enter a routine via a &GOTO causes an
error, and terminates execution of the CPL program.

Nesting Routines
A routine may call other routines. For example,

&CALL A

&RETURN
&ROUTINE A

&CALL B
&RETURN

&ROUTINE B

&RETURN
14-5

CPL User's Guide

Ending Routines: The &RETURN and &STOP Directives
There are two ways in which you may want to terminate a routine:

• If the routine performs correctly, you usually want it to return control to the main CPL
program, so that the program can continue its execution. This is performed by the
&RETURN directive.

• If the routine fails, or if the routine was called because an error occurred in the main
program, you may want the routine to abort execution of the main program and return
control to the main program's caller. This is done with the &STOP directive.

The &RETURN Directive: The &RETURN directive ends the routine and returns program
execution to the point from which the routine was invoked. A routine can contain more than one
&RETURN directive (for example, returns from &IF directive &THEN clauses). If a routine has
no return statement, the physical termination of the routine invokes a return operation. A
&RETURN directive can return a severity code and display a message text, as shown in Table 14-1.
Further details on these uses of &RETURN are found in Chapter 15.

The &STOP Directive: The &STOP directive has the same format as the &RETURN
directive. This is shown in Table 14-1.
If the &STOP directive is used in a main procedure, it acts just like the &RETURN directive.
However, if the &STOP directive is used in an internal routine, it halts execution of the entire

Table 14-1
Forms of the &RETURN and &STOP Directives

Directive Action
&RETURN Halts execution of the procedure in which it

occurs. Returns control to the procedure's
caller.

&STOP Halts execution of the procedure in which it
occurs. If this procedure is a routine, &STOP
also halts execution of the program containing
the routine and of any other routines that pro
gram may have active. Control returns to the
main program's caller.

&RETURN &MESSAGE text Halts execution, as above. Displays text on
&STOP &MESSAGE text user's terminal (and writes it into command

output files) when control returns.
&RETURN severity {&MESSAGE text] Halts execution, as above. Returns a severity
&STOP severity {&MESSAGE text} code to the caller. If the &MESSAGE direc

tive is included, displays text at the user's
terminal and writes it into command output
files.

14-6

Writing Routines and Functions

CPL program, and returns control to the program's caller. The following example shows the
&STOP and &RETURN directives used in a routine:

&ARGS A
&CALL CHECKUP
TYPE A = %A%
& RE TURN
&ROUTINE CHECKUP

&IF %A% < 20 &THEN &RETURN & MESSAGE Arg A acceptable
&ELSE &STOP &MESSAGE Argument A too large.

If the value of A in this example is less than 20, the &RETURN directive displays the message
Arg A acceptable. The TYPE command then prints the value of A.
If the value of A is greater than 20, the &STOP directive displays the message Argument A too
large. The &STOP directive also halts execution of the main CPL program. Therefore, the
TYPE command is not executed. Instead, control returns to the main program's caller. The caller
is either the user (if the user invoked the stopped program) or whatever CPL program invoked the
program and passed argument A to it.

Writing Functions in CPL
You can define your own CPL functions by writing a CPL program and invoking it using a
function call. The format of such a function call is

[RESUME program-name arg-list]

When a CPL program encounters such a function call, it executes program program-name as a
function, passing it the arguments in arg-list. program-name is either the full pathname or the
filename of the CPL program. If program-name is a filename, CPL searches for the program in
the currently attached directory; it cannot search for the program using the search rules facility.
arg-list is an optional list of values to pass to the invoked program. The items in arg-list are
separated by blank spaces. Like any function call, the program-name and arg-list for this function
call can include variable references, other function calls, and quoted strings.
The program invoked by a RESUME function is an ordinary CPL program. If the RESUME
function passes arg-list arguments, the invoked program must include an &ARGS directive to
receive these arguments.
If you want the invoked program to return a value, it must contain a &RESULT directive. The
format for this directive is

&RESULT expression

expression is evaluated and returned as the value of the function, replacing the function call in the
text of the calling program. The expression must evaluate to a single value; it can include variable
references, function calls, or a quoted string. If you do not provide a &RESULT directive, the
function call is replaced by a null value.

14-7

CPL User's Guide

You can place the &RESULT directive anywhere in the invoked program, although it is usually
placed at the end of the program, immediately before the &RETURN directive. A program can
contain more than one &RESULT directive, although only one can be used during each
invocation; the function returns the value of the last &RESULT directive it encounters before
executing a &RETURN or &STOP directive. Therefore, the &RESULT directive can be used in
&IF statement clauses such as

&IF test &THEN &DO
&RESULT %value-l%
&RETURN
SEND

&ELSE &RESULT %value-2%
&RETURN

For example, this user-written function, named SQUARE.CPL, either squares or cubes a given
number, depending upon the arguments provided:

&ARGS X:DEC; EXPONENT:DEC
&IF %EXPONENT% = 2 &THEN &DO

&RESULT %X% * %X%
&RETURN
&END

&IF %EXPONENT% = 3 &THEN &DO
&RESULT %X% * (%X% * %X%)
&RETURN
SEND

&ELSE &STOP &MESSAGE Improper exponent

SQUARE.CPL is invoked by the following statement:

&S A := [RESUME SQUARE.CPL 5 3]

SQUARE.CPL takes 5 as the value for argument X and 3 as the value for argument EXPONENT.
It therefore performs the cube of 5 and returns the integer 125. Variable A (in the calling
program) is set to the returned value of 125.
If a CPL procedure that contains a &RESULT directive is not invoked as a CPL function (that is,
if the invocation is not enclosed within function call brackets) executing the &RESULT directive
causes an error.

14-8

15
Error and Condition Handling

This chapter discusses the following topics:

• Error handling, using the &SEVERITY and &CHECK directives
• Returning severity codes from routines and programs using the &RETURN and

&STOP directives
• Condition handling, using the &ON, &REVERT, and &SIGNAL directives
• Handling errors and conditions using CPL routines

Error Handling
When a PRIMOS command executes, it produces an error code known as a severity code.
Severity codes may take one of three values, as shown in the table below. After each PRIMOS
command executes, the severity code it produces is placed in the system-defined local variable,
SEVERITY$. The SEVERITY$ variable contains the severity code value for the most recendy
executed PRIMOS command.

C o d e M e a n i n g
0 No error
Positive integer Error
Negative integer Warning

Note
The system-defined variable SEVERITY$ is generated by the first
PRIMOS command issued in a CPL program or routine; therefore, this
first PRIMOS command cannot test the SEVERITY$ variable. Do not
define a variable named SEVERITY$ in your CPL program. Doing so
interferes with CPL's ability to handle errors.

When a CPL program is executing, the CPL interpreter checks the value of SEVERITY$
following the execution of each PRIMOS command (and following the execution of the &ARGS
directive, as well). If SEVERITY$ has a value greater than zero, and the CPL program has not
defined its own error handling parameters, the CPL interpreter terminates execution of the CPL
program.

15-1

CPL User's Guide

User-defined Error Handling
CPL programs can define their own error handling in four ways:

• They can use the &SEVERITY directive to modify the CPL interpreter's response to
severity codes.

• They can use the &CHECK directive to define their own error conditions.
• They can use the &ROUTINE directive (in connection with either the &CHECK or the

&SEVERITY directive) to define error handling subroutines.
• They can test the value of SEVERITY$ at some specific point in the program by using

an &IF statement (for example, &IF %SEVERITY$% > 0 &THEN...).

The program's &SEVERITY directive or &CHECK directive is tested each time that a PRIMOS
command is executed. Therefore, common programming practice is to place one &SEVERITY or
&CHECK directive at the beginning of the CPL program.
The &SEVERITY directive takes precedence over the &CHECK directive. If a PRIMOS
command is executed when both a &SEVERITY directive and a &CHECK directive are active,
the CPL interpreter invokes the &SEVERITY directive first. If the &SEVERITY directive returns
(that is, if it does not execute a &STOP directive or a &GOTO), the &CHECK directive is then
executed.
The operation of the &SEVERITY and the &CHECK directives is explained in the following
sections.

The &SEVERITY Directive
The &SEVERITY directive has the following format:

&SEVERITY (level action}

where level can be

&ERROR
&WARNING

and action can be

&FAIL
&IGNORE
&ROUTINE handlerjabel

For example, & SEVERITY &ERROR &ROUTINE ERROR_HAPPENED
The &SEVERITY directive checks the SEVERITY$ system-defined variable immediately after
the execution of each PRIMOS command. Therefore, you can specify the &SEVERITY directive
once in your CPL program, rather than writing an &IF directive to test the value of SEVERITY$
after each PRIMOS command.

15-2

Error and Condition Handling

The action clause specifies what is to be done if a severity code as bad as or worse than level is
encountered. If action is &FAIL, the CPL interpreter terminates execution of the procedure, and
returns a positive severity code to the caller of the procedure. If action is &IGNORE, execution
continues. If action is &ROUTINE, CPL invokes the specified error handling routine. (Handlers
are discussed under Condition Handling, later in this chapter.) handler Jabel must evaluate to a
routine label.
If specified, level must be &ERROR or &WARNING. If level is omitted, action also must be
omitted. Automatic severity handling is then disabled. Hence, typing just &SEVERITY is
equivalent to &SEVERITY & WARNING &IGNORE; in other words, ignore all errors.
If the handler ends normally or executes a &RETURN statement, control passes to the statement
following the one that caused the &SEVERITY handler to be invoked. The only exception to this
is when the program contains both a &SEVERITY and a &CHECK directive. When the
&SEVERITY handler returns, it tests the &CHECK directive. If &CHECK evaluates to TRUE,
the CPL interpreter invokes the &CHECK handler before returning control to the next statement
in the sequence.
If a CPL program contains multiple &SEVERITY directives, execution of a PRIMOS command
is checked by the most recently encountered &SEVERITY directive; &SEVERITY directives
issued earlier in the program are ignored.

The &CHECK Directive
The &CHECK directive invokes a handler if a given expression is true. The &CHECK directive
has the following format:

&CHECK expression & ROUTINE handler

For example,

&CHECK %THIS_VAR% > %THAT_VAR% &ROUTINE DISASTER

The &CHECK directive causes the CPL interpreter to check the current value of expression after
executing each PRIMOS command. If expression evaluates to TRUE, the &CHECK handler is
invoked; otherwise, no action is taken.
If the &CHECK handler ends normally or executes a &RETURN directive, control passes to the
statement following the one that caused the invocation.

Usually, expression contains the severity level variable reference %SEVERITY$%. However, the
&CHECK directive can check any expression that evaluates to a Boolean expression, even if the
expression has nothing to do with severity levels. For example, a &CHECK directive can be used
to maintain a log of PRIMOS commands executed during a CPL program.
If your program contains both a &SEVERITY directive and a &CHECK directive, the
&SEVERITY directive is always invoked first. If the &SEVERITY handler returns, the
&CHECK directive is then invoked. Suppose a CPL program contains the following statements:

&CHECK %THIS% > %THAT% &ROUTINE IT_WAS_GREATER
&SEVERITY &ERROR &ROUTINE ERROR HAPPENED

15-3

CPL User's Guide

In this example, when a PRIMOS command causes a positive severity code to be returned, it also
causes variable this to become greater than variable that. In this case, the &SEVERITY handler
ERRORJHAPPENED is invoked first. If ERROR_HAPPENED returns, the &CHECK handler
IT_WAS_GREATER is invoked. If that handler returns, control is passed to the next statement
after the PRIMOS command that caused the invocations.
If a CPL program contains multiple &CHECK directives, execution of a PRIMOS command is
checked by the most recently encountered &CHECK directive; &CHECK directives issued earlier
in the program are ignored.

Passing Severity Codes
Assume a CPL program that runs several other CPL programs. Its construction might look like
this:

RESUME TASK1.CPL
RESUME TASK2.CPL
RESUME TASK3.CPL

You want this main program to know whether each of the programs it runs executes correctly. To
accomplish this, have each of the three programs return a severity code as part of its &RETURN
or &STOP directive. This severity code is a value that you establish within the program; it is not
automatically generated.

The &RETURN Directive
The &RETURN directive has the following format:

&RETURN {severity} {&MESSAGE text}

For example: &RETURN 1 &MESSAGE ' It failed'
The &RETURN directive returns control to the statement in the main program immediately
following the one that invoked the subprogram. In the example above, the &RETURN directive
returns a severity code of 1 to the invoking program.

severity must evaluate to an integer. This integer is returned to the invoking program as a severity
code. That is, this number is used to set the SEVERITY$ variable in the main program. If you
omit severity from the &RETURN statement, it returns zero.
If the &MESSAGE clause is present, text is displayed at the user's terminal. (See a further
discussion of &RETURN in Chapter 14.)

15-4

Error and Condition Handling

Note
When you define your own value for SEVERITY$ (as you do with
this directive), you may assign it whatever integer value you please,
and test for that value.
When you test for a system-supplied value for SEVERITY$, however,
do not test for a specific integer. Rather, the test should be

• 0, for no error
• > 0, for an error
• < 0, for a warning

The &STOP Directive
The &STOP directive has the following format:

&STOP {severity} {&MESSAGE text}

For example, &STQP 1 &MESSAGE wrong, Wrong WRONG!
The &STOP directive is processed like the &RETURN directive if it occurs in a main CPL
program. However, if it occurs in a subprogram, it halts both the routine in which it occurs and
the procedure that invoked the routine.
The &STOP directive can return a user-defined severity code and/or display a message on the
terminal. These features are identical to the features of the &RETURN directive.
The &STOP directive is explained more fully in the discussion of routines in Chapter 14.

Condition Handling
CPL provides an interface to the PRIMOS condition mechanism. This mechanism handles special
conditions, such as the interruption of a running CPL program by pressing the CONTROL-P or
BREAK keys. Refer to the Prime User's Guide for an introduction to the PRIMOS condition
mechanism.
The PRIMOS condition mechanism uses a procedure known as an on-unit to handle a condition.
It calls an on-unit each time a special condition is raised. Different on-units are called for
different conditions. This is the default method of handling conditions in CPL.
You can also define your own routines for dealing with special conditions. These user-defined
routines are called handlers. A condition handler is a CPL routine. First you define a routine in
your CPL program using the &ROUTINE directive. Then you declare that routine as a condition
handler by an &ON directive. You use a separate &ON directive for each condition. These
handler declarations are generally placed at the beginning of your main CPL program. When the
CPL interpreter encounters a handler declaration, it saves the name of the handler routine and the
name of the condition it handles.

15-5

CPL User's Guide

When a condition is raised, the CPL interpreter examines its list of handlers. If it finds a handler
for the condition, it executes the handler. The handler may stop program execution, or may handle
the problem and then return to the point of interruption. If you have not declared a handler for a
condition, the PRIMOS condition mechanism searches the stack for an appropriate on-unit. This
on-unit may be a system-defined on-unit, or may belong to another CPL invocation. Information
in the condition stack frame is available through the CNDJNFO command function. (See
Chapter 12.)
Because of the overhead involved in searching the stack for a handler, signalling (deliberately
raising) a condition is expensive. Therefore, only use condition signalling for unusual or unlikely
events. (Issuing an &ON directive to declare a handler is not expensive.)

The &0N Directive
You can use the &ON directive to define a handler for a condition. The &ON directive has the
following format:

&ON condition &ROUTINE handlerjabel

For example,

&CN bad_ input &ROUTINE bad_inp_handler

This statement defines a handler handlerjabel for condition, handlerjabel and condition must
evaluate to a routine label and an identifier, respectively, condition may be one of the predefined
PRIMOS conditions (described in the PRIMOS Subroutines Reference Guide, Volume III) or one
invented by the user. If the condition is raised, and the handler has not been reverted (see the
next section, The &REVERT Directive), the handler is executed. (User-defined conditions are
raised by using the &SIGNAL directive, explained later in this chapter.)
handlerjabel must be defined by a &ROUTINE directive elsewhere in the CPL program; it may
not be defined by a &LABEL directive. If the end of the handler is reached, or if &RETURN is
executed, control returns to the PRIMOS condition mechanism. If the handler executes a nonlocal
&GOTO to a label outside itself, execution returns to the invocation of CPL in which the handler
was defined (the stack is unwound if necessary), and then the &GOTO is executed. This aborts
the command that raised the condition. By definition, a label is outside a handler if it occurs
earlier in the file than the &ROUTINE directive in question.

The &REVERT Directive
The &REVERT directive has the following format:

&REVERT condition

For example,

& REVERT bad_ input

15-6

Error and Condition Handling

condition is the name of an error condition. &REVERT cancels (reverts) the CPL program's
handler for condition. If no handler for condition exists, &REVERT performs no operation.

The &ROUTINE Directive
The &ROUTINE directive designates the start of a routine. It has the following format:

&ROUTINE routinejabel

For example,

& ROUTINE my_ rout ine

This directive identifies the code that follows as an internal routine. The &ROUTINE code is
terminated by another &ROUTINE directive (indicating the beginning of another internal routine)
or by the end of the CPL file. A &ROUTINE directive may not occur inside a CPL statement
group, such as &DO, &SELECT, or &DATA. &ROUTINE cannot be executed conditionally;
that is, it may not be used inside an &IF or &ELSE statement.

Any routine may be invoked directly by using the &CALL directive (explained in Chapter 14). If
the routine is declared as a condition handler by a &CHECK, &SEVERITY, or &ON directive, it
may also be invoked by raising the condition it is intended to handle.
Internal routines may not be "fallen into", or entered by a &GOTO. If the &ROUTINE directive
is accidently encountered during the normal execution of a CPL program, a fatal error occurs and
execution of the program is terminated.
Execution of a routine terminates when it executes a &RETURN or &STOP directive, or when it
executes a nonlocal &GOTO. A &GOTO is nonlocal if it jumps to a label that appears in the
CPL file before the routine containing the &GOTO.

The &SIGNAL Directive
You can use the &SIGNAL directive to raise a condition. The &SIGNAL directive has the
following format:

&SIGNAL condition {&NO_RETURN}

For example,

& SIGNAL bad_ input

This directive raises the condition specified in condition and causes the CPL condition
mechanism to search for a handler for that condition. The expression condition must evaluate to
an identifier.
If there is no handler for condition in the CPL program, the PRIMOS condition mechanism
continues to search the user's stack for on-units. If the user has written no on-units, PRIMOS
condition handling is invoked.

15-7

CPL User's Guide

&NO_RETURN may be omitted. If specified (as in &SIGNAL bad_input &NO_RETURN), then
it is an error for the handler to return; execution must be aborted using the &STOP directive or a
nonlocal &GOTO.

A Condition Handling Example
The following example shows the use of the &ON, &REVERT, &ROUTINE, and &SIGNAL
directives in a CPL program:

&ON BADNUM & ROUT INE IMPROPER
&0N QUIT$ &ROUTINE IMPROPER
&S NUM := [RESPONSE 'how many']
&S OFNUM := [RESPONSE 'in a sample of]
&IF %OFNUM% = 0 &THEN &SIGNAL BADNUM
&IF %OFNUM% < %NUM% &THEN &SIGNAL BADNUM
&S PERCENT := (%NUM% * 100) / %OFNUM%
&REVERT BADNUM
&ON BADNUM &ROUTINE TINY
&IF %PERCENT% = 0 &THEN &SIGNAL BADNUM
&ELSE TYPE %NUM% in a sample of %OFNUM% is %PERCENT% percent
&RETURN &MESSAGE Successful completion

&ROUTINE TINY
TYPE Percentage less than one percent.
&RETURN

&ROUTINE IMPROPER
TYPE This sample cannot be used.
&STOP &MESSAGE Failed

This program requests two integer arguments and returns what percent the first number is of the
second number. If the sample is improper, or if the percentage is greater than 100 percent or less
than 1 percent, it raises a user-defined condition.
The first &ON directive sets the user-defined condition BADNUM to call the routine
IMPROPER. If the argument values are improper, the &SIGNAL directive raises the condition
BADNUM, which is handled by the routine named IMPROPER. The second &ON condition sets
the system-defined condition QUITS to the routine named IMPROPER. A QUITS condition
occurs if the user presses the CONTROL-P key while this program is running.
Later in the program, the &REVERT directive disassociates the BADNUM condition from the
IMPROPER routine, and the next &ON directive associates BADNUM with the TINY routine.
Therefore, when the next &SIGNAL directive raises the condition BADNUM, the condition is
handled by the TINY routine.

15-8

Appendices

Syntax Summary

▶ &ARGS
Syntax:

Types:

Examples:

&ARGS {name-1 {:{type}{=default} }...{;name-n}
{optname:-flaglist{ name-1 {:{type} {=default}}}...{ name-n} {;optname-2...}
CHAR, CHARL, TREE, ENTRY, DEC, OCT, HEX, PTR,
DATE, REST, UNCL
fiargs truth; beauty; charm
fiargs truth:dec; beauty:tree=mydir>file; charm:char
fiargs charm:char; tr_flag:-tr truth:dec;~

be_flag:-be beauty:tree=mydir>file

▶ &CALL
Syntax: &CALL routine_name
Example: &call this_routine

^routine this routine

▶ &CHECK
Syntax: &CHECK expr &ROUTINE handler
Example: ficheck %this_var%>%that_var% & routine disaster

A-1

CPL User's Guide

▶ &DATA

Syntax:

Example:

&DATA stmt
data 1

data n
&END
&data seg

vl #prog
&if %debugger_used%~
fithen lo *>bin>new_prog.bin.dbg
&else lo *>bin>new_prog.bin

Send

^ &DEBUG

Syntax: &DEBUG {optionjist}
Options: &0N &OFF &ECHO &NO_ECHO &EXECUTE

&NO_EXECUTE &WATCH &NO_WATCH

Example: & debug &echo all & watch beserk_var

▶ &DO
Syntax: &DO {iteration]

stmt
stmt

stmt
&END

where iteration is any one of the following:

1. null (statement grouping)
2. {&WHILE while} {&UNTIL until}
3. var := start {&TO to} {&BY by} ~ {&WHILE while} {&UNTIL until}
4. var &LIST list {&WHILE while} {&UNTIL until}
5. var &ITEMS items {&WHILE while} {&UNTIL until}
6. var := start &REPEAT repeat ~ {&WHILE while} {&UNTIL until}

A-2

Syntax Summary

Examples: fido i := 1 &to 3
ftn abc%i%.ftn

fiend

fido &while [null %a%]

&do fiuntil [null %a%]

fido a := 5 fito 10

&do a := 5 &to 10 &by 2

&do a := 5 &by 2 &to 10

fido a := 5 fito 10 fiwhile [null %a_string%]

fido a := 5 fito 10 fiuntil [null %a_string%]

fido a filist %list_of_names%

&set_var unit := 0
&do a fiitems [wild a_dir>@.pll -single unit]

&do a := 6 firepeat %a% * %a_constant%

&do a := - 6 fito - 100 &by - 2

fido a := - 1 &repeat %a% * - 1 fiuntil [length %a_
string%] > 10

▶ &EXPAND

S y n t a x : r 0 N - »&EXPAND |^F j

Example: fiexpand on

▶ &GOTO
Syntax: &GOTO label
Example: figoto a_label

A-3

CPL User's Guide

▶ &IF-&THEN-&ELSE
Syntax &IF test &THEN true_stmt

{&ELSE false_stmt}
Example: &if %i% > 5 fithen type i = %i%

▶ &LABEL
Syntax:

Example:

&LABEL label_name
stmt

&label a_label
attach richs

▶ &0N
Syntax: &0N condition &ROUTINE handlerjabel
Example: (on bad_input fir out ine bad_input_handler

▶ &RESULT
Syntax: &RESULT expr
Example: & result 4*6

▶ &RETURN
Syntax: &RETURN {severity} {&MESSAGE text}
Examples: & return

(return 1
(return %severity$%
(return (message Hello!
(return 1 (message Oops

▶ &REVERT
Syntax: &REVERT condition
Example: (revert bad_input

A-4

Syntax Summary

▶ &ROUTINE

Syntax: &ROUTINE handler_name

Example : (rou t ine bad_ inp_hand ler

▶ &SELECT

Syntax: &SELECT expr
&WHENexprl {,expr2,expr3, ... ,exprN}
stmt
&WHENexprl {,expr2,expr3, ... ,exprN}
stmt

{&OTHERWISE
stmt}

&END

Example: (select %what_to_do%
(when abe
at tach r ichs
(when 6,%one_var% + %two_var%
(r e t u r n
(otherwise
resume not_one_of_those.cpl

(end

▶ &SETJVAR

Syntax: &S{ET_VAR} varl {, var2, ..., varN} := value}
Examples: (set_var this_var := this_str ing

(s this_var := this_str ing

(s a,b,c := 0

A 5

CPL User's Guide

▶ &SEVERITY
Syntax: &SEVERITY {level action}

where level can be

&ERROR
&WARNING

and action can be

&FAIL
&IGNORE
&ROUTINE handlerjabel

Examples: (severity (warning (ignore
(seve r i t y (e r ro r (r ou t i ne fix_ i t
(s e v e r i t y (e r r o r (f a i l
(s e v e r i t y

▶ &SIGNAL

Syntax: &SIGNAL condition {&NO_RETURN}

Example: (signal bad_bug (no_return

▶ &STOP

Syntax: &STOP {severity} {&MESSAGE text}
Example: (stop 1 (message wrong, Wrong, WRONG!

A-6

Error Messages

Introduction
When an error occurs in a CPL program, the CPL interpreter displays four items of information:

1. A line of text giving

• The error number
• The line number in the CPL program in which the error occurred
• If the errant text itself cannot be displayed, the last token (that is, the last word or

operator) read before the error occurred
2. A full error message. If the error-causing text can be displayed, it is included as part of

the message.
3. The text of the line of source code in which the error occurred.
4. A line describing the action taken by the CPL interpreter and giving the name of the

program in which the error occurred. For example,

OK, r blunder

CPL ERROR 40 ON LINE 2. A reference to the undefined
var iab le
"FILLNAME" has been found in this statement.

SOURCE: como %fillname%.como

Execution of procedure terminated. BLUNDER (cpl)
ER!

In this example, program BLUNDER.CPL contained a misprint, FILLNAME, for the variable,
FILENAME.
The rest of this appendix contains a list of CPL error messages. The term text marks the spot in
a message where erroneous text from the running program is printed. Messages are given in order
by number.

B-1

CPL User's Guide

Error Messages
1 An error was encountered while attempting to read the

source text of the procedure.
2 The token <text> was found where the keyword &THEN was

expected. All &IF directives must contain a &THEN clause.
3 The keyword "&THEN" may only be used in the "(IF"

d i r ec t i ve .
4 The "&ELSE" directive may only be used as the directive

immediately following an "&IF" directive.
5 The value <text> is not a number, but is used where a number

is expected.
6 This "&END" directive could not be matched with a

corresponding "&D0", "&DATA", or "&SELECT" directive.
7 Internal CPL error: the value of the loop control variable

<text> for this iterative "&D0" loop could not be
retrieved. Please contact your system administrator .

8 The value <text> is not Boolean (true/false), but is used
where a Boolean value was expected.

9 The value <text> is not a legal variable name, but is used
where one is expected.

10 The value <text> is not a valid statement label, or else a
&GOTO directive has been used to transfer control to this
rou t i ne .

11 A syntax error was found in this &ARGS directive.
13 Internal CPL error: the semantic stack has been

overpopped. Please contact your system administrator .
14 The value of the &WHILE expression <text> in this &DO loop

is not Boolean (true/false) as expected.
15 An unexpected problem was encountered while attempting to

access the value of the variable <text> in this statement.
Possible internal CPL error; please contact your system
adminis t rator.

16 A syntax error was found in a command function reference in
this statement.

17 Internal CPL error: an unexpected error occurred while
attempting to set the value of variable <text> in this
statement. Please contact your system administrator.

18 The numeric value <text> used in this directive exceeds the
value range limits of that directive.

B-2

Error Messages

19 The token <text> was found where the keyword "(ROUTINE"
was expected.

20 The procedure has referenced the global variable <text>,
but global variables have not been enabled in this process .

21 An unexpected error occurred while attempting to set or get
the value of the global variable <text>. Check the global
variables file for possible damage, accidental deletion,
or lack of Write access.

22 The token <text> is unrecognized or appears in this
iterative "(DO" directive in an unexpected place. This
directive contains one or more illegal, duplicate, or out-
of-order clauses.

23 The value <text> is not a valid routine name, or is a
statement label used where a routine name was expected. A
label may not be used as a condition, severity, or check
r o u t i n e .

24 Flow of control has dropped into the routine <text>.
Control may be transferred to a routine only by means of a
condition, severity, or check routine invocation.

25 The CPL expression <text> contains a non-numeric value
where a numeric value was required, or an illegal
combination of operators and/or values.

2 6 This directive ends before the appearance of one or more
required clauses.

27 The text <text> follows the logical end of this statement.
28 The token <text> was found where one of the keywords

&ERROR, &WARNING, (ROUTINE, (FAIL, or (IGNORE was
expected.

29 The value of the check expression of the currently enabled
check routine is <text>, which is not Boolean (true/false)
as expected.

30 The token <text> was found where the keyword ":=" was
expected.

31 The (DATA directive may not be nested.
32 An unexpected error was encountered while operating on the

temporary file containing the data from this (DATA block.
Check for insufficient access rights, disk full or
offline, or the use of "CLOSE ALL" in the procedure.

33 Unable to create or open a temporary file with which to
process this (DATA block. Check for insufficient access on
the current directory.

B-3

CPL User's Guide

34 A Primos command statement is required as an argument to
the (DATA directive.

35 The Primos command invoked by this (DATA block has read all
supplied input data and is requesting more. To suppress
this message and continue execution using terminal input,
use the (TTY directive.

37 The token <text> was found where the keyword "(MESSAGE"
was expected.

38 An illegal option keyword has been found in this (DEBUG
d i r e c t i v e .

39 Insufficient storage was available to complete processing
of this statement. Reduce the depth of nesting of the CPL
program, or the length and/or number of local variables .

40 A reference to the undefined variable <text> has been
found in this statement.

41 The text following <text> in this statement contains a
syntax error in a variable reference .

42 The end of the CPL procedure file was reached before the
logical end of the procedure. One or more (DO, (SELECT, or
(DATA directives does not have a matching (END statement.

43 The initial-value, (TO or (BY expression in this numeric
"(DO" directive has a non-numeric value.

44 Local command variables are not available at command
l e v e l .

45 This line contains a command function reference, but the
command function was not successfully invoked.

4 6 The token <text> was found where either (WHEN or
(OTHERWISE was expected.

47 The keyword "(WHEN" may only be used in the "(SELECT"
d i r e c t i v e .

48 The keyword "(OTHERWISE" may only be used as the directive
immediately following the last "(WHEN" of a "(SELECT"
d i r e c t i v e .

4 9 This command may only be invoked as a command function .
50 The token <text> was found in the options field of this

" (SIGNAL" d i rect ive. The on ly opt ion suppor ted is
"(NO_RETURN".

51 The token <text> has been found in the options field of
this "(EXPAND" directive. The only options supported are
"ON" and "OFF".

B-4

Error Messages

52 <text> is not a directive recognized by CPL.
53 Abbreviation expansion is enabled for this statement, but

the expansion could not be successfully performed.
54 Too many variables have been placed on the watchlist.

55 The (RESULT directive may only be executed in a CPL program
invoked as a command function.

56 The label or routine name <text> could not be found in this
CPL procedure. It was used as the target of a (GOTO, (CALL,
or (ROUTINE directive elsewhere in the procedure.

1001 A null argument (two successive semicolons) was found in
this (ARGS directive.

1002 This (ARGS directive contains a syntax error which most
likely is an invalid or missing delimiter character.

1003 An illegal option argument name (keyword) has been found
in this (ARGS directive.

1004 Repea t coun ts (i nd i ca ted by *) a re no t p resen t l y
implemented in the (ARGS directive.

1005 An unrecognized data type name has been found in this (ARGS
d i r e c t i v e .

1006 Internal CPL error: a bad state was encountered during
parse of this (ARGS directive. Please contact your system
a d m i n i s t r a t o r .

1007 A word or token in this (ARGS directive exceeds the
implementation maximum limit of 1024 characters .

1008 In this (ARGS directive, an object argument specifier
appears to the right of one or more option argument
(keyword) specifiers. All object arguments must appear to
the left of the first option argument.

1014 The default value specified for an argument in this (ARGS
directive is not the correct data type.

1015 In th is (ARGS direct ive, a defaul t value has been
specified for a data type for which default values are not
suppor ted .

1017 In th is (ARGS direct ive, a defaul t value expression
contains an undefined variable reference, or a syntax
error in a variable reference.

B-5

CPL User's Guide

1018 In this (ARGS directive, the data type UNCL has been
specified more than once or for an option (keyword)
argument. The UNCL data type may be used only for a single
object argument.

1019 This (ARGS directive contains a global variable name (a
name starting with "."). Only local variable names may
appear in an (ARGS directive.

1020 This (ARGS directive contains an illegal variable name.
1021 The (ARGS directive does not accept numeric option

arguments. Option arguments must contain at least one
alphabetic character.

B-6

Running CPL Programs as
Batch Jobs and Phantoms

Running CPL Programs as Batch Jobs
To run a CPL program as a Batch job, use the command

JOB pathname {-CPL} {batch_options} {-ARGS CPL_arguments}

pathname is the pathname of the CPL job, with or without the .CPL suffix.
Batch looks for pathname.CPL. If it finds it, it runs the file as a CPL job. If Batch does not find
pathname.CPL, it looks for pathname. If it finds pathname, it runs it as a command input
(COMINPUT) file.
The -CPL option may be used to force Batch to run a file as a CPL file, whether it ends in .CPL
or not.
This option may be placed in the command line, or in the $$ JOB line within the CPL file itself.
(If a $$ JOB line is used, it must be the first non-comment line of the CPL file.)
batch-options are the usual options that govern control of Batch jobs:
-ACCT information

-CPTIME

-ETIME

{ seconds TNONE J

{minutestNONE J

-HOME pathname

-PRIORITY value

-QUEUE queuename

-RESTART |^0S1

C-1

CPL User's Guide

For information on these options, see the Prime User's Guide or the PRIMOS Commands
Reference Guide.

Note
Batch's -FUNIT option cannot be used with CPL programs. File units
for CPL jobs are allocated dynamically.

The -ARGS option is used to pass arguments to the CPL program. Everything (except comments
when abbrev processing is on) following the word -ARGS is passed as arguments to the CPL
program when it is run. For this reason, the -ARGS option must be the last option on the
command line or in the $$ JOB line. If any Batch options follow the -ARGS option, Batch
ignores them and passes them to the CPL file instead.

Job Displays for CPL Jobs
The JOB -DISPLAY command tells whether a job is a regular job (that is, a COMINPUT file), or
a CPL job. Displays for CPL jobs begin with the words Cpl job. If the -ARGS option is used,
the arguments are shown as the final line of the display (or before Accts: if -ACCT is
specified).

An Example
Assume a CPL program, named TEST.CPL, that contains the following &ARGS statement:

& ARGS WHAT: TREE; HOWMANY: DEC = 0

Running this program as a job displays the following lines:

OK, JOB TEST -ARGS SMITH>TESTBED 50
[JOB Rev. 20.0 Copyright (c) Prime Computer, Inc. 1985]
Your job, #00009, was submitted to queue normal-1.
Home=<ADVERT>JONES>BATCH_JOBS
OK, JOB -DISPLAY
[JOB Rev. 20.0 Copyright (c) Prime Computer, Inc. 1985]

Cpl job TEST(#00009), user JONES executing (queue normal-1).
Submitted today at 9:05:49 a.m., initiated today at 9:05:58 a.m
Funit=6, priority=5, cpu limit=None, elapsed limit=None.
Project=DEFAULT, Notify=No.
Args: SMITH>TESTBED 50
Home ufd=<ADVERT>JONES>BATCH_JOBS
OK,

C-2

Running CPL Programs as Batch Jobs and Phantoms

Running CPL Programs as Phantoms
Any CPL program that does not request terminal input can be run as a phantom job, using the
command

PHANTOM pathname [cpl-arguments]

Notes
You cannot use the PHANTOM command's FUNIT argument when
running a CPL program as a phantom job. If you try to do so, the funit
specification is passed as an argument to the CPL program. (PRIMOS
allocates file units dynamically for CPL programs, thus guarding
against conflicts.)
A CPL program running as a phantom does not need to use the
LOGOUT command to log out the phantom. The &RETURN directive
(implicit or explicit), which concludes a CPL program, causes the
phantom to log out in an orderly fashion.

C-3

COMINPUT and CPL Compared

This appendix explains the similarities and differences between CPL programs and command
input files (COMINPUT files). It also illustrates, by means of several sample programs, how
command input files may be converted into CPL programs.

Comparisons
The questions that arise when comparing CPL files (or programs) and command input files are
the following:

• How are the files executed?
• How do they execute other files and programs?
• What commands can they execute?
• What special commands must they contain?
• How can they control the execution of the commands they contain?
• What error-handling capabilities do they have?
• What use can they make of variables?
• What use can they make of user-defined abbreviations?
• How do they handle interactive utilities (such as ED and BIND), and user programs?

The answers to these questions are given below.

Execution of CPL and COMINPUT Files
CPL programs are executed by the RESUME or CPL commands. For example,

R MYPROG.CPL

Command input files are executed by the COMINPUT command. For example,

CO FILE. COMI

D-1

CPL User's Guide

Execution of Programs by CPL and COMINPUT Files
CPL programs use the CPL command to execute other CPL programs, the RESUME command to
execute most user programs, and BASIC or BASICV to execute BASIC programs. (CPL
programs cannot use the COMINPUT command. Therefore, they cannot execute COMINPUT
files.)
CPL programs do not need to specify the file units on which other programs are to be opened.
The CPL interpreter assigns the uniLs automatically.

Similarly, CPL programs do not need to close the file units after the programs they call have
finished running. The CPL interpreter closes them automatically.
Command input files use the COMINPUT command to execute other command files. They
execute CPL programs and most user programs with the RESUME command, and BASIC or
BASICV to execute BASIC programs.
The command input file must specify the file unit on which the called command file is to be
opened, and must use the CLOSE command to close the file unit when the called command file
has finished running.

What Commands Can Be Used?
CPL programs can contain (and execute) any PRIMOS commands except

• COMINPUT
• CLOSE ALL
• DELSEG ALL
• LOGIN, LOGOUT
• ICE

Command input files can contain any PRIMOS command except
• CLOSE ALL
• DELSEG ALL
• LOGIN, LOGOUT
• ICE

Special Commands Needed
A CPL file needs no special commands. (A CPL program always ends with a &RETURN
statement, but the CPL interpreter adds that statement for you if you do not put it in yourself.)
Command input files must end with CO -END, CO -TTY, or CO -CONTINUE.

D-2

COMINPUT and CPL Compared

Control of Execution
CPL programs can control the execution of the commands they contain by evaluating flow of
control directives, such as &IF, &DO, and &GOTO, contained in the CPL programs. (These
directives are explained in Chapters 2, 8, and 9.)
Command input files allow no control of execution. They must execute every command they
contain, in the order in which the commands appear in the file.

Error Handling
CPL programs may use the PRIMOS default mechanisms for error handling, severity code
handling, and condition handling. Or, they may use CPL directives and/or routines to define their
own error handling, severity code handling, and condition handling. (See Chapter 15 for details.)
Command input files must use PRIMOS default mechanisms for error and condition handling.

Use of Variables
CPL programs can use both local and global variables, as explained in Chapter 4. Command input
files can use only global variables. They must use the SETJVAR command to set or change the
value of these variables.

Use of Abbreviations
The &EXPAND directive allows a CPL program to pass commands to the abbreviation
preprocessor for expansion. Thus, users can use their own abbreviations for PRIMOS commands
and their arguments inside CPL files, as well as at command level.
Command input files cannot use the abbreviation preprocessor. The commands they contain can
use system-defined abbreviations only.

Use of Interactive Utilities and User Programs
CPL files handle interactive utilities and user programs in three ways:

• If the command that invokes the program or utility appears by itself (for example,
BIND), the CPL interpreter invokes the program or utility, and transfers control to the
user at the terminal. The user provides the data needed by the utility. When the user
leaves the utility (for example, by typing QUIT or FILE), control returns to the CPL
program.

D-3

CPL User's Guide

• If the command that invokes the utility or user program is preceded by a &DATA
directive (for example, &DATA BIND), the CPL interpreter constructs a temporary
file to contain the data (or subcommands) needed by the program or utility.
Construction of the temporary file terminates when the CPL interpreter reads an
&END directive. When the temporary file is complete, the CPL interpreter invokes the
utility or user program and gives it the data or commands contained in the temporary
file.

Note
If the CPL program is attached to one directory when it begins
execution of the &DATA group, and to another directory at the end
of the &DATA group, it cannot delete its temporary file. The file
therefore remains in the directory in which it was created.

If the &DATA group contains a &TTY directive immediately preceding the &END
directive, the temporary file is built, the utility or program invoked, and the data or
commands from the temporary file passed to it. When the end of the temporary file is
reached, control passes to the user at the terminal. When the user finishes with the
program or utility, the CPL file resumes control.

CPL programs may also request specific items of information from the user during their
execution by the use of the QUERY and RESPONSE functions (explained in Chapter 5).

Command input files do not distinguish between commands that invoke utilities and other
commands.

• A utility is invoked when the command that invokes it is read.
• Once the utility has been invoked, succeeding commands in the COMINPUT file are

passed to the utility until some command relinquishes control of the utility.
• If a CO -TTY command appears during this time, control passes to the user at the

terminal. If the user types CO -CONTINUE while still inside the utility, the command
file resumes passing commands to the utility. If the user leaves the utility and then
types CO -CONTINUE, the COMINPUT file resumes passing commands to PRIMOS.

Sample Files
Here are some sample command input files. To demonstrate the comparison between command
input files and CPL files, each file has been rewritten twice: once as a CPL file without variables,
once as a CPL file with variables.

D-4

COMINPUT and CPL Compared

A Simple File
Here is a simple command file, C_TEST, that compiles and links a FORTRAN program:

/*BEGIN TEST OF COMMAND FILE
COMOUTPUT 0_TEST
DATE
/♦COMPILE THE PROGRAM
F77 TEST.F77
/*LINK THE PROGRAM
BIND
LO TEST.BIN
L I
DYNT -ALL
FILE
/•COMMAND FILE TEST COMPLETED
DATE
COMO -END
CO -END

If C_TEST is rewritten as a CPL program, it looks like this:

/♦BEGIN TEST OF COMMAND FILE
COMOUTPUT 0_TEST
DATE
/♦COMPILE THE PROGRAM
F77 TEST.F77
/♦LINK THE PROGRAM
& D ATA B I N D / * F i r s t c h a n g e
LO TEST.BIN
L I
DYNT -ALL
FILE
S E N D / * S e c o n d c h a n g e
/•COMMAND FILE TEST COMPLETED
DATE
COMO -END

D-5

CPL User's Guide

With the addition of variables you get the following:

&ARGS WHAT : TREE = TEST
/♦BEGIN TEST OF COMMAND FILE
COMOUTPUT 0_TEST
DATE
/♦COMPILE THE PROGRAM
F77 %WHAT%.F77
/♦LINK THE PROGRAM
&DATA BIND
LO %WHAT%.BIN
L I
DYNT -ALL
FILE
SEND
/♦COMMAND FILE TEST COMPLETED
DATE
COMO -END

Command Files That Run Other Command Files
The -CONTINUE option of COMINPUT allows command files to be chained. The following
example illustrates the chaining of three command files, and shows how file unit conflicts can be
avoided. The command file C_GO contains the following commands:

/♦ Compile the program
F77 TEST.F77 -64V
/♦ Invoke the BIND command file
COMINPUT C_BINDTEST 7
CLOSE 7
/♦ Return command to user terminal
COMINPUT -TTY

The command file C_BINDTEST contains the following commands:

/♦ BINDTEST command file
BIND
LO TEST.BIN
L I
DYNT -ALL
FILE TEST.RUN
/♦ Invoke the RUN command file
COMINPUT C_RUNTEST 10
CLOSE 10
COMINPUT -CONTINUE

D-6

COMINPUT and CPL Compared

The command file C_RUNTEST contains the following commands:

/♦ RUNTEST command file
R TEST.RUN
/♦ Return to 'calling' command file
COMINPUT -CONTINUE 7

The calls and returns involved in this sequence are much simpler with CPL files. The CPL
versions of these three files look like this:

/♦ GO.CPL, a translation of C_GO
/♦ Compile the program
F77 TEST.F77 -64V
/♦ Invoke the BIND operation
R BINDTEST.CPL

/♦ BINDTEST command file, CPL version
&DATA BIND
LO TEST.BIN
L I
DYNT -ALL
FILE TEST.RUN
&END
R RUNTEST. CPL

&RETURN

/♦ Add &DATA directive

/♦ Add &END directive
/♦ R replaces CO
/♦ The CLOSE command has been removed
/♦ &RETURN replaces CO -CONTINUE

/♦ RUNTEST command file, CPL version
R TEST.RUN
&RETURN

D-7

CPL User's Guide

If the three files want to pass the name of a local variable among themselves, they can do that as
well:

/♦ New version of GO. CPL
&ARGS WHAT : TREE = TEST
/♦ Compile program
F77 %WHAT%.F77 -64V
/♦ Pass program name to BINDTEST.CPL
R BINDTEST.CPL %WHAT%

/♦ New version of BINDTEST.CPL
&ARGS WHAT
&DATA BIND
LO %WHAT%.BIN
L I
DYNT -ALL
FILE %WHAT%.RUN
&END
/♦ Pass argument to third CPL program
R RUNTEST. CPL %WHAT%

/♦ New version of RUNTEST. CPL
&ARGS WHAT
R %WHAT%
/♦ Control returns to BINDTEST.CPL automatically

A Final Note
If a pathname begins with a quotation mark, COMINPUT programs assume the closing quotation
mark. If the programmer forgets to type the closing quotation mark, the COMINPUT program
supplies it. CPL programs, on the other hand, neither assume nor supply the final quotation mark.
If you have pathname problems when you convert a COMINPUT program to a CPL program,
check the pathnames to be sure that each opening quotation mark is balanced by a final quotation
mark.

D-8

Index

Index

Symbols
% character, 1-4, 2-3, 3-6
& character, 1-4, 3-6' character, 3-5, D-8

(character, 3-1,3-5 to 3-6,11-11* character, 12-7
+ character, 7-4
, character, 3-5, 8-9
- character, 3-6, 3-8/13-6
. character, 4-6
; character, 2-4,3-1, 3-5,11-10
@ character, 7-4
[character, 1-4,3-5* character, 2-16, 7-4
~ character, 3-1 to 3-2, 3-6,11-10

ABBREV file, 11-7
ABBREV function, 12-14
Abbreviations, 11-7

command line, 11-9
disabling, 11-8
enabling, 11-7
evaluation of, 11-8
expanding, 12-14
in COMINPUT files, D-3
running CPL programs using, 1-4

ACAT
see: Access categories

Access categories
existence of, 2-15
pathname for, 12-8
wildcard search for, 12-13

ACLs, select only, 7-7
AFTER function, 7-2, 12-4
Ampersands

as directive indicator, 1-4
within strings, 3-6

Apostrophes
see: Quotation marks

&ARGS directive, 2-3, 6-1, 13-1
alphabetic values, 2-4, 6-3
argument groups, 13-8
changing the value of, 4-1
data types, 6-3,13-2
default values, 6-2, 13-4
evaluation, 6-6
excess values, 6-7
flag name, 13-6
improper data type, 6-6
location in program, 13-2

multiple &ARGS, 13-2
multiple arguments, 2-4
object arguments, 13-2
option arguments, 13-6
order of arguments, 13-6
REST data type, 6-7

Argument groups, 13-7
REST arguments in, 13-10

Arguments, 13-1
circular references forbidden in, 13-6
data types for, 13-2
default values for, 13-4
flag name, 13-6
in nested CPL programs, 2-13
indirect references forbidden in, 13-6
multiple values for, 13-9
object arguments for, 13-2
omitted, 2-5
option, 13-6
order of evaluation of, 13-5
other , as default, 13-5
passing, 2-13
positional, 2-4
posi tion-dependent, 13-2
posi tion-independent, 13-6
REST data type, 13-10
UNCL data type, 13-11
with same values, 13-5

Arithmetic expressions
division, 12-2
evaluated using CALC, 12-2
evaluation of, 11-9
format of, 3-5
in PRIMOS commands, 11-10
logical values in, 4-4
loop counters in, 9-10
operators, 2-6
permitted values for, 4-3

Arithmetic functions, 12-2
Arrays, 11-5

creating variables in, 4-2
retrieving values of, 12-9

Asterisks, for home directory, 12-7
At sign, as wild character, 7-4
ATTRIB function, 12-7

B
Batch jobs, C-l

data input, 5-2
QUERY function in, 5-3
RESPONSE function in, 5-5
run commands for, 1 -2

BEFORE function, 7-2,124
BIND, running from a CPL program, 2-17
Blank lines, in &DATA groups, 2-17
Blanks

in &DATA groups, 2-17, 3-2
in expressions, 2-6, 3-5
in line continuation, 3-3
in quoted strings, 3-2, 3-8
multiple, 3-3
preventing concatenation, 2-4
within strings, 3-5

Block of statements
see: Grouping statements

Brackets
as function indicators, 1-4
within strings, 3-5

&B Y directive
see: &DO loops

CALC function, 11-10,12-2
implicit call to, 11-9

&CALL directive, 14-2
variable values during, 11-2

Calling a routine, 14-2
Case statement

see: &SELECT directive
CHAR data type, 6-3

default values for, 13-5
CHARL data type, 6-3
&CHECK directive, 15-2 to 15-3

multiple, 15-4
routines, 14-3
&SEVERITY precedence, 15-2

Closing a file, 12-12
CMDNCO, 1-3
CND_INFO function, 12-14,15-6
COMINPUT files, 5-6, D-l

chained files, D-6
data input from, 5-2
example of input from, 5-7
file units, D-2

Command directory
see: CMDNCO

Command input files
see: COMINPUT files

Command level, 11-9
Command line

arguments, 2-4
assigning multiple values to argument,

13-9

lndex-1

CPL User's Guide

Command line (continued)
evaluation of, 11-9
excess argument values on, 6-7
excess items on, 13-10
expressions on, 3-6
flag name on, 13-6
maximum length of, 3-3
omitted arguments on, 2-5, 6-2
order of arguments on, 13-2
parsing halted, 13-11
rest of, 13-10
unclaimed items on, 13-10
unexpected values, 13-11

Command operations, 1-1
Command output files

see: COMOUTPUT files
COMMANDS search list, 1-3
Commands

see: PRIMOS commands
Commas

in &S ELECT directives, 8-9
within strings, 3-5

Comments, 3-4
as literals, 3-6
in &DATA groups, 2-17
suppression of, 11-11

COMOUTPUT files, 2-23
Compare strings, 12-7
Concatenation

multiline statements, 3-3
of functions, 11-3
of integers, 4-3
of quoted strings, 11-4
of strings, 3-7
of variables, 2-4

Condition handling, 15-5
canceling a handler, 15-7
defining a handler, 15-6
forcing a condition, 15-6
mechanism, 15-6
raising a condition, 15-7
required program abort, 15-8
user-written routines for, 15-5

Conditions, information on most recent,
12-14

Control directives
see: Decision making

CPL
case of letters, 3-4
converting COMINPUT file to, D-2
creating program, 1-2
debugging, 10-1
defined, 1-1
directives, 1-4
error messages, B-l
errors in, 2-22

format rules, 3-1
interpreted language, 1-2
interpreter, 1-4
language, 1-4
locating routines in, 14-4
program example, 2-1
program names, 1-2, 3-4
running programs, 1-2
special characters, 3-5
suffix, 1-2
terminal interaction, 5-1

CPL command, 1 -2
in a CPL program, 2-13

D
&DATA directive, 2-17
&DATA groups, 2-17

calls to routines, 14-3
COMINPUT and CPL compared, D-4
example of input from, 5-7
indenting line in, 3-2
input to another CPL program, 5-6
mechanism for, D-4
terminal input to, 2-18
&TTY directive, 5-2
&TTY directive in, 2-18

Data types, 13-2
default values and, 13-5
REST, 13-10
table of, 13-3
UNCL13-11

Date
current, 12-14
data type for, 6-3
for wildcard search, 12-13
formats for, 12-14 to 12-15
of file modification, 12-7
select files by, 7-7

DATE data type, 6-3
DATE function, 12-14
&DEBUG directive, 10-1

&ECHO, 2-24
location of, 10-1
routines, 14-3
scope of, 10-2
table of options, 10-2
with no options, 10-3

&DEBUG &ECHO/&NO_ECHO, 10-3
&DEBUG &WATCH/&NO_WATCH,

10-4
Debugging CPL, 10-1

basics, 2-23
echoing executed statements, 10-3
monitoring variable values, 10-4
table of options, 10-2

DEC data type, 6-3
Decision making, 8-1

COMINPUT and CPL compared, D-3
&IF directive, 2-6, 8-2
loops, 9-1
table of directives, 8-1
see also: &SELECT directive

DEFGV
see: DEFINE_GVAR command

DEFTNE_GVAR command, 4-6
DELETE_VAR command, 4-9
DIR function, 12-7
Directive, &END, 2-11
Directives

abbreviations in, 11-8
&ARGS, 2-3, 6-1
arithmetic expressions in, 11-9
&BY, 9-6
&CALL, 14-2
&CHECK, 15-3
&DATA.2-17
&DEBUG, 10-1
&DO, 2-11, 9-1
&ECHO, 10-3
echoing, 10-3
&ELSE, 2-9
&END, 8-7
&ERROR, 15-2
evaluation of, 11-9
&EXECUTE, 10-2
execution of, 1-7
&EXPAND, 11-7
&FAIL, 15-2
functions in, 2-14
&GOTO, 2-12
&IF, 2-6, 8-2
&IGNORE, 15-2
&ITEMS, 9-13
&LABEL, 2-12
&LIST.9-11
logical expressions in, 11-9
&MESSAGE, 5-11, 15-4
&NO_ECHO, 10-3
&NO_EXECUTE, 10-2
&NO.RETURN, 15-8
&NO_WATCH, 10-4
&ON, 15-6
&OTHERWISE, 8-9
&REPEAT, 9-10
&RESULT, 14-7
&RETURN, 2-21,14-6, 15-4
&REVERT, 15-6
&ROUTTNE, 14-2, 15-2, 15-7
&SELECT, 8-7
&SEVERITY, 10-6, 15-2
&S1GNAL, 15-7

lndex-2

Index

r

Directives (continued)
&STOP, 14-6,15-5
syntax summary, A-1
&THEN, 2-6
&TO, 9-6
&TTY, 2-18
&TTY_CONTINUE, 5-2
&UNTTL, 9-9
&WARNTNG, 15-2
& WATCH, 10-4
&WHEN, 8-7
&WHILE, 9-8

Directories
existence of, 2-15
pathname for, 12-8
select only, 7-7
wildcard search of, 12-13

Disk partition, 12-7
Displaying

executing CPL statements, 10-3
messages, 5-11

Division
remainders, 12-3
rules for, 12-2

&DO directive
in &DO groups, 2-11
in &DO loops, 9-1

&DO groups, 2-11
format for, 3-2

&DO &ITEMS loops, 9-13
WILD function controlled, 7-8

&DO&UST loops, 9-11
WILD function controlled, 7-8

&DO loops, 9-1
&BY clause in, 9-6
table of, 9-1
&TO clause in, 9-6
see also: Loops

&DO&UNTTL loops, 9-9
&DO &WHILE loops, 9-8
Dots, in global variable names, 4-6

&ECHO directive
see: &DEBUG &ECHO/&NO_ECHO

ED
example of in CPL program, 2-19
running from a CPL program, 2-17

&ELSE directive, 2-9
format for, 3-2
multiple statements, 2-11
nesting, 8-5

&END directive
errors, 5-9
in &DATA groups, 2-17

in &DO groups, 2-11
&SELECT directive, 8-7

End program, &RETURN, 2-21
ENTRY data type, 6-3
ENTRYNAME function, 12-8
&ERROR

see: &SEVERITY directive
Error codes, 10-6
Error handling, 10-1, 15-1

COMINPUT and CPL compared, D-3
default, 2-22, 15-1
severity checking, 15-2
table of severity options, 10-6
user-defined, 15-2

Error messages, B-l
Errors, 10-6

excess items on command line, 13-10
execution encounters &ROUT1NE

directive, 14-4
illegal command, 2-2
inactive global variable file, 4-7
infinite loops, 9-10
input from a &DATA group, 5-9
messages (listing), B-l
program must be run interactively, 5-2
quoted program options, 3-8
&RESULT directive in main program,

14-8
wildcard list too large, 7-7

ESR
see: EXPAND_SEARCH_RULES

function
Evaluation

of abbreviations, 11-8
of&ARGS directive, 6-6
of functions, 11-3
of iteration elements, 11-11
of quoted strings (forced), 11-6
of variables, 11-2

&EX directive
see: &EXECUTE directive

&EXECUTE directive
see.&DEBUG &EXECUTE/

&NO_EXECUTE
Executing

see: Running
EXISTS function, 2-15,12-8
&EXPAND directive, 11-7

routines, 14-3
scope of, 11-8

EXPAND_SEARCH_RULES function,
12-8

Expressions
command line supplied, 3-6
evaluation of, 11-1
evaluation suppression of, 11-11

format of, 3-5
in &SELECT directives, 8-7
multiple in &SELECT, 8-9
nested, 12-2
not evaluated, 3-6
parentheses in, 12-2

&FAIL
see: &SEVERITY directive

File I/O
OPEN.FILE function, 12-11
READ_FILE function, 12-12
using &DO &ITEMS loops, 9-15
WRITE_FILE function, 12-14

File system functions (listing), 12-7
File system objects

existence of, 2-15
pathname for, 12-8

File unit numbers
for closing a file, 12-12
from opening a file, 12-11
in &DO &ITEMS loops, 9-15
WILD -SINGLE function, 7-8

File units, D-2
Filenames

data type for, 6-3
return all, 7-6
wildcards, 7-5

Files
closing, 12-12
date of modification in, 12-7
directory name for, 12-7
existence of, 2-15, 12-8
for global variables, 4-6
information about, 12-9
length, 12-7
opening, 12-11
pathname for, 12-8
reading from, 12-12
select only, 7-7
selecting groups of, 7-1
type, 12-7
writing to, 12-14

Flag names
as indicators, 13-7
as values, 13-7
effect of UNCL on, 13-12
naming conventions, 13-6
synonyms, 13-7

Flow of control, 2-5
&GOTQ2-12
see also: Decision making

Format rules, 3-1

lndex-3

CPL User's Guide

Function calls
see: Functions

Functions, 2-14,11-3,12-1
abbreviations and, 11-8
AFTER, 7-2
arithmetic (listed), 12-2
as argument defaults, 13-5
BEFORE, 7-2
command line, 11-9
evaluating quoted, 11-6
evaluation of, 1-6,11-3
evaluation suppression, 11-11
EXISTS, 2-15
file system (listed), 12-7
nested, 11-3
not evaluated, 3-6
NULL, 2-14
operating system (listed), 12-14
QUERY, 5-2
QUOTE, 11-5
quoted string returned, 12-1
RESCAN, 11-6
RESPONSE, 5-5
string-handling (listed), 12-4
UNQUOTE, 3-9
user-written, 14-7
variables in, 2-14
WILD, 7-6

Functions (names of)
ABBREV, 12-14
AFTER, 124
ATTRIB, 12-7
BEFORE, 12-4
CALC, 12-2
CND_INFO, 12-14
DATE, 12-14
DIR, 12-7
ENTRYNAME, 12-8
EXISTS, 12-8
EXPAND_SEARCH_RULES, 12-
GET_VAR, 12-9
GVPATH, 12-9
HEX, 12-3
INDEX, 12-4
KLMD, 12-9
KLMF, 12-10
KLMT, 12-11
LENGTH, 12-5
MOD, 12-3
NULL, 12-5
OCTAL, 12-3
OPEN_FILE, 12-11
PATHNAME, 12-12
QUERY, 12-15
QUOTE, 12-5
READ_FILE, 12-12

RESCAN, 12-5
RESPONSE, 12-15
RESUME, 14-7
SEARCH, 12-5
SUBST, 12-5
SUBSTR, 12-6
TO_HEX, 12-4
TO_OCTAL, 12-4
TRANSLATE, 12-6
TRIM, 12-6
UNQUOTE, 12-7
VERIFY, 12-7
WILD, 12-13
WRITE FILE, 12-14

Functions (user-written), 14-7
calling, 14-7
returning from, 14-7
value returned, 14-7

G
GETJVAR function, 12-9
Global variables, 44 to 4-5, 11-2

activate file, 4-6
as argument defaults, 6-5, 13-5
COMINPUT files, D-3
command line, 11-9
commands for, 4-6
create file, 4-6
deactivate file, 4-7
defining, 4-6
delete file, 4-7
deleting, 4-9
determine current value, 12-9
file, 11-2
file pathname, 12-9
listing, 4-10
monitoring, 104
names for, 4-6
password-protected files, 4-7
permitted values, 4-8
scope of, 11-2
scope of file activation, 4-7
setting, 4-7, 11-2
values, 44

&GOTO directive, 2-12
in condition handlers, 15-6
in loops, 9-4
in routines, 14-3

Grouping statements
&DATA groups, 2-17
&DO groups, 2-11

GVPATH function, 12-9

HEX data type, 6-3
HEX function, 12-3
Hexadecimal integers, 6-3

convert decimal to, 124
convert to decimal, 12-3
example, 6-5

Hyphens
evaluation of, 3-8
flag name indicator, 13-6
within strings, 3-6

I
&IF directive, 2-6, 8-2

&ELSE clause, 2-9
nested &ELSE, 8-5
nested &THEN, 8-3
&THEN clause, 2-6
to abort program, 5-11
types of tests, 2-6

&IGNORE
see: &SEVERITY directive

Indentation, 3-2
INDEX function, 124
Input, 5-1
Integers, 4-2, 12-2

&ARGS data type, 6-3
Interactive programs

running within CPL, 2-17
terminal input to, 2-18

&ITEMS directive
see: &DO &ITEMS loops

Iteration, 11-11
parentheses for, 3-1
suppressing, 11-11

JOB command, 1-2, C-l
Jumping

see: &GOTO

K
KLMD function, 12-9
KLMF function, 12-10
KLMT function, 12-11

&LABEL directive, 2-12
LENGTH function, 12-5

quoted strings, 114

lndex-4

Index

Letters, 34
&ARGS values, 2-4, 6-3
&SETJVAR values, 4-2
translate to uppercase,-12-6

Line
containing a comment, 34
maximum length, 3-3

Line continuation, 3-2
commented lines, 34
quoted strings, 3-7
suppression of, 11-11

&LIST directive
see: &DO &LIST loops

LIST.VAR command, 4-10
Local variables

see: Variables
Logging PRIMOS commands, 15-3
Logical expressions

case of letters in, 3-4
&CHECK directive test, 15-3
&DO &UNTIL loops, 9-9
&DO &WHILE loops, 9-8
evaluated using CALC, 12-2
evaluation of, 11-9
format of, 3-5, 8-2
in &IF statements, 8-2
in &SELECT directives, 8-10
integer equivalents, 44
operators, 2-6
permitted values, 4-3
quoted values in, 4-4

Logical operators, 8-2
NOT operator, 2-16

Loops, 9-1
breaking out of, 94
&B Y clause omitted, 9-6
counted &DO, 9-6
counted &DO &ITEMS, 9-13
counted &DO &LJ.ST, 9-11
counted &DO &REPEAT, 9-10
counted loop execution, 9-6
counter, 9-2
counter final value, 94
&DO &ITEMS loops, 9-13
&DO&UST loops, 9-11
&DO &REPEAT loops, 9-10
&DO UNTIL loops, 9-9
execution of, 9-2
for file I/O, 9-15
infinite, 9-10
logical &DO &UNTIL, 9-9
logical &DO &WHILE, 9-8
multiple tests, 9-10
nested, 9-5
one-trip, 9-9
table of, 9-1

&TO clause omitted, 9-6
WILD functions in, 7-8
zero-trip, 9-6

M
&MESSAGE clause

&RETURN directive, 5-11, 15-4
&STOP directive, 154

&MESSAGE directive
see: &MESSAGE clause

MOD function, 12-3
Modular programming

&DO groups, 2-11
error monitoring, 15-4
&GOTQ 2-12
routines, 14-1
running another CPL program, 2-13
user-written functions, 14-1

Modulus division, 12-3

N
Names

flag names, 13-6
of CPL programs, 1-2, 34
of global variables, 4-6
of variables, 3-5

&NEX directive
see: &NO_EXECUTE directive

&NO_ECHO directive
see: &DEBUG &ECHO/&NO_ECHO

&NO_EXECUTE directive
see: &DEBUG &EXECUTE/

&NO_EXECUTE
&NO_RETURN

see: &SIGNAL directive
NOT operator

as wild character, 74
used with function, 2-16

&NO_WATCH directive
see: &DEBUG &WATCH/

&NO_WATCH
NULL function, 2-14,12-5
Null string

command processor evaluation of, 13-3
for omitted arguments, 2-5
in&DO&LIST, 9-11
option argument set to, 13-7
test for, 2-14,12-5

OCT dau type, 6-3
OCTAL function, 12-3

Octal integers, 6-3
convert decimal to, 124
convert to decimal, 12-3
example, 6-5

&ON directive, 15-6
On-units, 15-5
OPEN.FILE function, 12-11
Operating system functions (listing),

12-14
Operators

as literals, 3-6
comparison sequence, 4-4
format for, 3-5
order of precedence, 12-2
table of, 2-6

&OTHERWISE directive
see: &SELECT directive

Output, 5-1

Parentheses
as iteration characters, 3-1, 11-11
in expressions, 3-5
within strings, 3-6

PATHNAME function, 12-12
Pathnames

data type for, 6-3
directory portion of, 12-7
filename portion of, 12-8
generate from filename, 12-8
of current directory, 12-12

Percent signs
as variable indicators, 1-4, 2-3
within strings, 3-6

PHANTOM command, 1-2, C-3
Plus sign, as wild character, 74
Pointer addresses, 6-3
PRIMOS commands, 3-1

ABBREV, 11-8
arithmetic expressions in, 11-10
echoing, 10-4
error testing for each, 15-3
errors in, 2-22
for global variables, 4-6
forbidden, 2-2
hyphenated options, 3-8
in COMINPUT files, D-2
in CPL programs, 1-5, 2-1
iteration, 11-11
JOB, 1-2, C-l
multiple on one line, 3-1
non-execution of, 10-2
null strings in, 13-3
permitted, 2-1
PHANTOM, 1-2, C-3

lndex-5

CPL User's Guide

PRIMOS commands (continued)
quoted strings and, 3-8
severity codes, 15-1
special characters, 11-10
suppressing evaluation in, 11-10
syntax supported, 3-1
to run CPL programs, 1-2
TYPE, 5-9
user abbreviations, 11-7
variables for, 4-5

PRIMOS errors
see: Error handling

PRIMOS special characters, 3-1
Procedure languages, 1-1
Procedures

see: Routines
PTR data type, 6-3

Q

QUERY function, 5-2,12-15
Quotation marks

in COMINPUT files, D-8
to quote strings, 3-5
within a string, 3-5

QUOTE function, 11-5, 12-5
Quoted strings, 3-7 to 3-8, 114

blanks in, 3-2
concatenation, 3-7
evaluation of, 3-8
format, 3-5
hyphenated options, 3-8
in TYPE command, 5-10
length of, 114
multiple blanks in, 3-8
quoting, 11-5
returned by functions, 12-1
unquote and evaluate, 11-6, 12-5
unquote during write, 12-14
unquoting, 3-9,11-5,12-7

R
READ_FILE function, 12-12

&DO &ITEMS loops, 9-15
Reading a file, 12-12

using &DO &JTEMS loops, 9-15
Referencing directory, 12-8
Relational expressions

format of, 3-5
operators, 2-6

&REPEAT directive
see: &DO &REPEAT loops

RESCAN function, 11-6, 12-5
RESPONSE function, 5-5, 12-15
REST data type, 6-7, 13-10

&RESULT directive, 14-7
RESUME command, 1-2
RESUME function, 14-7
&RETURN directive, 2-21,14-6,15-4

from routine, 14-6
&MESSAGE clause, 5-11
see also: &RESULT, &STOP

&REVERT directive, 15-6
Revision number, 12-10
& ROUTINE directive, 14-2,15-7

called from &SEVERITY, 15-2
for condition handling, 15-7
in &ON directive, 15-6

Routines, 14-1
calling, 14-2
ending, 14-3
format, 14-2
invoked by a condition, 15-6
nested, 14-5
placement in programs, 144
return severity code, 154
terminating, 14-6
terminology, 14-1
uses, 14-2
variables used by, 14-3

Running CPL programs, 1-2
aborting execution of, 14-6
as abbreviations, 1-4
as batch jobs, C-l
as commands, 1 -3
as phantoms, C-3
completion message, 5-11
displaying executed statements while,

10-3
from a CPL program, 2-13,14-7
interrupting execution of, 15-5
multiple programs, 14
special conditions, 15-5
using search rules, 1-3
without executing commands, 10-2

Running programs from CPL, 2-1, D-2
as functions, 14-7
passing hyphenated options, 3-8

Runtime, display of execution, 2-23
Runtime interaction

see: terminal input

&S directive
see: &SET_VAR directive

SEARCH function, 12-5
Search rules

expanding filenames using, 12-8
functions that use, 12-7
running CPL programs using, 1 -3

Segment directories
existence of, 2-15
pathname for, 12-8
select only, 7-7
wildcard search for, 12-13

&SELECT directive, 8-7
evaluation, 8-9
&WHEN clause multiple values, 8-9

Semicolons
as argument separator, 24
as command separator, 3-1,11-10
within strings, 3-5

Serialization functions, 12-7
Serialization information

item of data, 12-10
string of data, 12-9
test value of data item, 12-11

SET_VAR command, 4-7
data types ignored, 13-3
monitoring values set by, 104

&SETJVAR directive, 4-1
alphabetic values, 4-2
compared to SETJVAR command, 4-
data types ignored, 13-3

Severity codes, 15-1
default, 2-22
user-specified, 154

&SEVERITY directive, 10-6, 15-2
multiple, 15-3
precedence over &CHECK, 15-2
routines, 14-3
scope of, 10-6
table of options, 10-6
without options, 15-3

SEVERTTYS variable, 15-1
checked by &CHECK, 15-3

&SIGNAL directive, 15-7
Signalling a condition, 15-6
Single quotation marks

see: Quotation marks
Software information

see: Serialization information
Spaces

see: Blanks
Special characters, 3-5
Statements, 3-1

format rules, 3-1
indenting, 3-2
maximum length of, 3-3
multiline, 3-2
one per line, 3-1

&STOP directive, 14-6, 15-5
in routines, 14-7

String functions (listing), 124

lndex-6

Index

Strings, 4-2
comparing, 44
comparing two, 12-7
concatenation, 3-7
first characters in, 7-2
last characters in, 7-2
length of, 12-5
maximum length, 3-7
null, 2-5
quoted, 3-7
quoting, 3-5, 11-5,12-5
reading from file, 12-12
removing leading and trailing blanks

in, 12-6
returning substring, 12-6
searching for characters in, 12-5
substituting characters, 12-5
translating, 12-6
writing to file, 12-14

Subroutines
see: Routines

SUBST function, 12-5
Substituting string values, 12-5
SUBSTR function, 12-6
Suffixes, 1-3

.CPL, 1-2
searching for, 12-8
using to select file, 7-1
wildcards in, 7-5

Switch option argument, 13-7
Syntax summary, A-1
Syntax suppressor

controlling evaluation of, 11-11
in &DATA group, 2-17

Terminal display, of executing commands,
2-23

Terminal input
conditional, 2-18
&TTY directive, 2-18

Terminal interaction, 5-1
message display, 5-11
QUERY function, 12-15
RESPONSE function, 12-15
string input, 5-5
yes/no questions, 5-3

&THEN directive, 2-6
format for, 3-2
multiple statements, 2-11

Tildes
as line continuation character, 3-2
as literals, 3-6
as syntax suppressor, 3-1, 11-10
see also: Line continuation, Syntax

suppressor

Time
see: Date

&TO directive
see: &DO loops

TOHEX function, 124
TO.OCTAL function, 124
TRANSLATE function, 12-6
TREE data type, 6-3
TRIM function, 12-6
&TTY directive, 2-18

batch jobs, 5-2
conditional use of, 2-18

TTY directive, 5-2
&TTY_CONTTNUE directive, 5-2
TYPE command, 5-9

quoted strings, 114

u
UNCL data type, 13-11
UNQUOTE function, 3-9, 11-5, 12-7

see also: RESCAN function
&UNTTL directive

see: &DO &UNTIL loops

Variable names
case of letters in, 34
format of, 3-5

Variable references
see: Variables

Variable values, case of letters in, 34,4-2
Variables, 2-3, 4-1,11-1

abbreviations and, 11-8
arrays, 11-5
as argument defaults, 13-5
assigning values to, 4-1
&CALL directive, 11-2
COMINPUT and CPL compared, D-3
concatenation of, 24
defined using &ARGS, 2-3
defining local, 11-2
determining current value of, 12-9
evaluating quoted, 11-6
evaluation of, 1-5, 11-2
evaluation suppression, 11-11
maximum size of value, 3-3
monitoring, 104
not evaluated, 3-6
program-independent, 4-5
quoted string values, 114
references to, 2-3
referencing, 11-2
routine uses of, 14-3
scope of, 2-13,44, 11-2, 14-3

setting using &SET_VAR, 4-1
setting using SETJVAR, 4-7
&SET_VAR, 4-1
SEVERITYS, 15-1
string values, 4-2
with the same value, 4-2
see also: Global variables

VERIFY function, 12-7

w
&WARNING

see: &SEVERITY directive
Warnings, 10-6
&WATCH directive

see: &DEBUG &WATCH/
&NO_WATCH

&WHEN directive
see: & SELECT directive

&WHILE directive
see: &DO &WHILE loops

Wild characters, 7-4
WILD function, 7-6,12-13

in &DO &ITEMS lists, 9-13
in loops, 7-8
-SINGLE argument, 7-7,9-13

Wildcards, 74
returning list of items, 7-6
returning single items, 7-7

WRTTE.FILE function, 12-14
Writing a file, 12-14

using &DO &ITEMS loops, 9-15

lndex-7

Surveys

READER RESPONSE FORM

CPL User's Guide
DOC4302-3LA

Your feedback will help us continue to improve the quality, accuracy, and organization of our user
publications.

1. How do you rate this document for overall usefulness?

| | excellent □ very good □ good □ fair □ poor

2. What features of this manual did you find most useful?

3. What faults or errors in this manual gave you problems?

4. How does this manual compare to equivalent manuals produced by other computer companies?

I I Much better Q Slightly better Q About the same
I I Much worse I I Slightly worse I I Can't judge

5. Which other companies' manuals have you read?

Name:
Position:_
Company:.
Address:_

.Postal Code:

First Class Permit #531 Natick, Massachusetts 01760

BUSINESS REPLY MAIL
Postage will be paid by:

Prime
Attention: Technical Publications
Bldg 21
Prime Park, Natick, Ma. 01760

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

	Front Cover
	Title Page
	i
	Copyright
	ii
	How To Order Technical Documents
	iii
	Contents
	v
	vi
	vii
	viii
	About This Book
	ix
	x
	xi
	Part I
	The Basic Subset
	Chapter 1
	Introduction to CPL
	1-1
	1-2
	1-3
	1-4
	1-5
	1-6
	1-7
	1-8
	Chapter 2
	The Basics of CPL
	2-1
	2-2
	2-3
	2-4
	2-5
	2-6
	2-7
	2-8
	2-9
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	Chapter 3
	CPL Format
	3-1
	3-2
	3-3
	3-4
	3-5
	3-6
	3-7
	3-8
	3-9
	Part II
	The Intermediate Subset
	Chapter 4
	Variables
	4-1
	4-2
	4-3
	4-4
	4-5
	4-6
	4-7
	4-8
	4-9
	4-10
	Chapter 5
	Terminal Input and Output
	5-1
	5-2
	5-3
	5-4
	5-5
	5-6
	5-7
	5-8
	5-9
	5-10
	5-11
	Chapter 6
	Arguments With Type-checking and Default Values
	6-1
	6-2
	6-3
	6-4
	6-5
	6-6
	6-7
	6-8
	Chapter 7
	Processing Groups of Files
	7-1
	7-2
	7-3
	7-4
	7-5
	7-6
	7-7
	7-8
	7-9
	Chapter 8
	Decision Making
	8-1
	8-2
	8-3
	8-4
	8-5
	8-6
	8-7
	8-8
	8-9
	8-10
	8-11
	Chapter 9
	Loops
	9-1
	9-2
	9-3
	9-4
	9-5
	9-6
	9-7
	9-8
	9-9
	9-10
	9-11
	9-12
	9-13
	9-14
	9-15
	9-16
	Chapter 10
	Debugging and Error Handling
	10-1
	10-2
	10-3
	10-4
	10-5
	10-6
	10-7
	10-8
	Part III
	Full CPL
	Chapter 11
	Expression Evaluation
	11-1
	11-2
	11-3
	11-4
	11-5
	11-6
	11-7
	11-8
	11-9
	11-10
	11-11
	Chapter 12
	Functions
	12-1
	12-2
	12-3
	12-4
	12-5
	12-6
	12-7
	12-8
	12-9
	12-10
	12-11
	12-12
	12-13
	12-14
	12-15
	12-16
	Chapter 13
	Object Arguments and Option Arguments
	13-1
	13-2
	13-3
	13-4
	13-5
	13-6
	13-7
	13-8
	13-9
	13-10
	13-11
	13-12
	Chapter 14
	Writing Routines and Functions
	14-1
	14-2
	14-3
	14-4
	14-5
	14-6
	14-7
	14-8
	Chapter 15
	Error and Condition Handling
	15-1
	15-2
	15-3
	15-4
	15-5
	15-6
	15-7
	15-8
	Appendices
	Appendix A
	Syntax Summary
	A-1
	A-2
	A-3
	A-4
	A-5
	A-6
	Appendix B
	Erropr Messages
	B-1
	B-2
	B-3
	B-4
	B-5
	B-6
	Appendix C
	Running CPL Programs as Batch Jobs and Phantoms
	C-1
	C-2
	C-3
	Appendix D
	COMINPUT and CPL Compared
	D-1
	D-2
	D-3
	D-4
	D-5
	D-6
	D-7
	D-8
	Index-1
	Index
	Index-2
	Index-3
	Index-4
	Index-5
	Index-6
	Index-7
	Surveys
	
	

